Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
I guess my objection is that your task is too obviously impossible. If I tell you that I can color any page in any coloring book, and you give me an infinite coloring book, I won't be able to finish, even though I know how to color. Similarly, if we have a decoder that can interpret infinitely many finite bit strings, it can be stumped by an infinite one, by virtue of its being infinite.
The thing is, not just any infinite input stream will do. It has to at all times look properly encoded to the decoder. You're allowed to come up with any encoding scheme that you like, so what you can try to do is to come up with an encoding scheme that an infinite input stream must violate in finite time. This turns out to be impossible, and the proof is fairly easy, but it is not as obvious as your description characterizes it here.