Apologies for the rather mathematical nature of this post, but it seems to have some implications for topics relevant to LW. Prior to posting I looked for literature on this but was unable to find any; pointers would be appreciated.
In short, my question is: How can we prove that any simulation of a problem really simulates the problem?
I want to demonstrate that this is not as obvious as it may seem by using the example of Newcomb's Problem. The issue here is of course Omega's omniscience. If we construct a simulation with the rules (payoffs) of Newcomb, an Omega that is always right, and an interface for the agent to interact with the simulation, will that be enough?
Let's say we simulate Omega's prediction by a coin toss and repeat the simulation (without payoffs) until the coin toss matches the agent's decision. This seems to adhere to all specifications of Newcomb and is (if the coin toss is hidden) in fact indistinguishable from it from the agent's perspective. However, if the agent knows how the simulation works, a CDT agent will one-box, while it is assumed that the same agent would two-box in 'real' Newcomb. Not telling the agent how the simulation works is never a solution, so this simulation appears to not actually simulate Newcomb.
Pointing out differences is of course far easier than proving that none exist. Assuming there's a problem we have no idea which decisions agents would make, and we want to build a real-world simulation to find out exactly that. How can we prove that this simulation really simulates the problem?
(Edit: Apparently it wasn't apparent that this is about problems in terms of game theory and decision theory. Newcomb, Prisoner's Dilemma, Iterated Prisoner's Dilemma, Monty Hall, Sleeping Beauty, Two Envelopes, that sort of stuff. Should be clear now.)
Perhaps I am answering a question other than the one you are asking, but: Every exercise in simulation is an exercise in evaluating which modeling concerns are relevant to the system in question, and then accounting for those factors up to a desired level of accuracy.
If you happen to be dealing with a system simple enough to be simulated exactly - and I don't know of any physical system for which this is possible - then it would be useful to talk about "proving" the correspondence between the simulation and the reality being modeled.
If you are dealing with a real system where you need to make approximations, my intuition says that the best you can do toward proving accuracy would be performing ample validations of the simulation against measured data and verifying that the simulation matches the data to within the expected tolerance.
I suspect that you and I have different concepts of what a simulation is, because you describe an agent (presumably a human being) interacting with the "simulation" in real time. In this case you are mucking up the dynamics of the simulation by introducing a factor which is not accommodated by the model, i.e. the human. The human's reasoning is influenced by knowledge from outside the simulation.
I didn't necessarily mean human agents. For example, this is a simulation of IPD with which non-human agents can interact with. Each step, the agents ... (read more)