In spare hours every month or three, I've been working on a questionnaire and calculation system to elicit background beliefs about cryonics so as to be able to capture people's opinions about the value of cryonics (even if they are "I would pay money to avoid it because it sounds really cold"). The idea is to be able to give this instrument to lots of people and let a sort of "wisdom the the crowds" process work on each separate element of the value calculation and then be able to play some of the insights back for specific people to bring them into some kind of sane conclusion on the subject, fixing their "outlier beliefs" on particular questions by showing them information many other people thought lead to different conclusions. I totally do not have this in final form but it has helped me form more than normally educated opinions on the subject.
From what I can tell, the place I part company with people who have already signed up without substantial calculation was in the estimate of the long term value of post-resuscitation life. (Well, that and I don't like the investment options normally used to pay for it, given other possible uses for my tim...
You are a pattern, instantiated in the neurons of your brain.
The pattern instantiated in the set of neurons that is currently typing this did not exist ten years ago, at least not if the pattern is specified to a certain level of precision (1). So if I am that pattern, I did not exist ten years ago. Nor will I exist in ten years. Nor do I wish to exist in ten years, except in the sense that I would not mind continuing to exist indefinitely as a backup, though I would very much prefer not to experience that kind of existence.
To my way of thinking, I am a nonrecurring pattern of interactions instantiated in a constantly changing system, some of which is in my brain, some of which is in other people's brains, and some of which is in the physical world around me, including but not limited to my body. "Preserving me" is consequently not a well-defined operation; it's very hard to say what it means to "preserve" a nonrecurring pattern.
That said, some things definitely seem to qualify as "preserving me" better than others. Preserving the information content of my brain and using it to reconstruct a dynamic entity which has the same memories and habits of...
This has been mentioned before, but are you taking the positive externalities of cryonics into account?
Specifically, signing up for cryonics increases the visibility and probably the credibility of cryonics. Consider also that cryonics is so tiny that one additional member has a relatively large impact.
Many of your objections to cryonics are based on the world of today, where cryonics is weird and marginalized. Have you tried recalculating your probability of cryonics success in a hypothetical world where cryonics is normal?
I think the most likely path to a world of normal cryonics is through individual signups. And I consider that world to be valuable enough to pay for a small chance of bringing it into existence.
are you taking the positive externalities of cryonics into account?
I'm not taking them into account, but mostly because I think they're small. The cryonics wants to be big article is only concerned with the storage costs, which I think are not a big issue. The big cost currently is in preparation for freezing, not the keeping cold. (Freezing and preparation is ~$100K while long term is only ~$100/year (so $10K if you can get 1% real return).
Hanson's article brings up more issues, which I think is good.
Even if cryonics became massively popular, however, we'd still have several problems: we don't know if we're preserving all the information, we don't know if it will ever be possible to extract the information, we might kill ourselves off first, it might never be cheap enough to revive a significant fraction of those frozen. These concern me enough that I think inducing others to sign up might actually be negative because it's redirecting money from current spending to what I think is probably a waste.
the world of today, where cryonics is weird and marginalized
The way I see it becoming normal starts with adoption by the scientific minded rational atheists who are it's mos...
Liquid nitrogen is pretty cheap, but providing it constantly over such a long time is hard.
I did some back of the envelope estimation and it seems to me that it can be practical (and in fact fairly cheap) to pre-load enough liquid nitrogen for couple centuries. The MRI magnets are example of keeping something cold for years without re-loading. If i were to sign up for cryonics I'd have to design my own coffin, it seems.
edit: note on the MRI magnets - i found out they do use refrigerator on the outer side of the dewar, not sure how necessary is this thou...
My odds aren't that low, but I'm similarly pessimistic because of the flexibility of one particular step--recovery of my body in time for meaningful information preservation. Most people who die young die of accidents, not protracted illnesses, which means quick vitrification is extremely unlikely. Term life insurance is around an order of magnitude cheaper than whole life insurance, but it will only protect you while relatively young; leaving you on the hook during your retirement-at-fixed-income years where the bulk of the death probability distribution is, and where timely vitrification is likelier.
You, I, and everyone we know have bodies that are incredibly unlikely to make it past 120. They're just not built to last.
That used to be the standard wisdom, but it is now disputed. There is evidence that aging stops. True, for humans it does so only when we are already decrepit and stand a substantial chance per year of dying, but some other animals stop aging before that point. So it is not beyond hope that we might make our bodies last much, much longer.
ETA: Googling further, I found Michael Rose's 55 theses.
...At the heart of the challenge of the 55
If you can set up a loop - 3d fabrication devices, fabrication tools, damage sensors, passive and active, machines for dissassembling things into basic parts and melting them into scrap, robots for assembling them, some source of power, a database for tracking things, wifi or bluetooth to connect stuff, and made them all modular and redundant, with the robots also assigned to removing and replacing broken parts on each other and everything else - if you can get that to be self repairing in a sustaining way,, you can just add things into its loop in some wa...
Do you have a Fermi calculation on the probability of it working? I'd be interested, even though I'm in that "there are plenty of other things one can do with money" group.
If it's even possible, it's several hundred years away.
Um, the citation didn't contain strong evidence for this claim (in fact, it didn't even make the claim).
EDIT: Whoops, missed the final paragraph. You did make that claim. Still, I'd say the evidence in that post is inadequate to such a strong claim, for reasons that other commenters have raised.
"Hundreds of years off" is a common estimation people give for technologies that seem really complicated and hard to make with our present knowledge. I've always found this fairly ridiculous; it's pretty much unprecedented in human history. When have we ever conceived of a specific technology, which we had any understanding of the workings behind, and taken hundreds of years to make it? The only cases I'm aware of that any sort of technology has been in-development for that long are if you count things like heavier-than-air flight, where we spent hundreds of years not applying the scientific method to understanding the problem and just threw up solutions willy nilly.
Nah. I can see the scanning procedure needed for whole brain emulation turning out to require some unspecified technology that's way too difficult for 21st-century science, or Moore's Law running out of steam before we reach the densities needed to do the actual emulation, but either one would be a Verne-type error; I can't see a category error on the order of electrical impulse => true resurrection happening unless we're very badly wrong about some very fundamental features of how the brain works.
What cryonics is missing is a catchy slogan, something along the lines of "afterlife for atheists".
That way the atheists wont want it because it sounds like religion and the religious wont want it because it sounds like atheism! Genius!
Cryonics already pattern matches to religion: we perform a ritual on the dead so that when our leaders have created a benevolent god it can resurrect them to live extremely long, extremely happy lives.
You want to make the pattern match central in cryonics marketing?
I see cryonics as a kind of insurance policy. Fitting, since it is literally a life insurance policy that funds it. As I continue to live on to see technology improve at an exponential* level, I can continually refine my options as needed. If I live to be 60 and by then, the cost of cryonics has dropped to $10 (which is admittedly an optimistic estimate), I can take the money I've paid in and withdraw both it and the interest it has accrued. If instead the cost has not dropped, or in fact has increased or even if the prospect of cryonics has disappeare...
Most people, given the option to halt aging and continue in good heath for centuries, would. Anti-aging research is popular, but medicine is only minimally increasing lifespan for healthy adults. You, I, and everyone we know have bodies that are incredibly unlikely to make it past 120. They're just not built to last.
But what are you, really? Your personality, your memories, they don't leave you when you lose a leg. Lose most parts of your body and you're still you. Lose your brain and that's it. [1] You are a pattern, instantiated in the neurons of your brain. That pattern is sustained by your body, growing and changing as you learn and experience the world. Your body supports you for years, but it deteriorates and eventually isn't up to the task any more. Is that 'game over'?
Perhaps we could scan people's brains at extremely high detail so we could run them in some sort of human emulator. This requires a thorough understanding of the brain, huge amounts of storage, unbelievably fast computers, and very detailed scanning. If it's even possible, it may be several hundred years away.
Our bodies aren't going to last that long, but what if we could figure out how to preserve our brains so that the information didn't decay? Then, if the future turned out to be one in which we had advanced brain emulation and scanning technology, we could be revived. I don't know if people in the future would want to spend the time or money to revive us, but in a future with technology this advanced, reviving a preserved brain as a computer simulation could be really cheap.
The most advanced technology for long-term tissue preservation today [2] is cryonics: freezing with vitrification. You add something to the blood that keeps ice crystals from forming and then freeze it. This is pretty much the same thing frogs do, hibernating frozen through the winter. The biggest organs that have been successfully brought back to working order after vitrification are rabbit kidneys, and the brain is a lot bigger and much more complex. While there are people applying this technique to human brains after death, it's very much a one way street; we can't revive them with current technology.
How much should it worry us that we can't reverse this freezing process? If we're already talking about revival via high-detail scanning and emulation, which is only practical after hundreds of years of technological development, does it matter that we can't currently reverse it? The real question in determining whether vitrification is sufficient is whether we're preserving all the information in your brain. If something critical is missing, or if something about our current freezing process loses information, the brains we think are properly preserved might be damaged or deteriorated beyond repair. Without a round trip test where we freeze and then revive a brain, we don't know whether what we're doing will work.
Another issue is that once you've frozen the brain you need to keep it cold for a few centuries at least. Liquid nitrogen is pretty cheap, but providing it constantly over such a long time is hard. Organizations fall apart: very few stay in business for even 100 years, and those that do often have departed from their original missions. Current cryonics organizations seem no different from others, with financial difficulties and imperfect management, so I don't think 200+ years of full functioning is very likely.
Even if nothing goes wrong with the organization itself, will our society last that long? Nuclear war, 'ordinary' war, bioterrorism, global warming, plagues, and future technologies all pose major risks. Even if these don't kill everyone, they might disrupt the cryonics organizations or stop technological development such that revival technology is never developed.
Taking all these potential problems and risks into account, it's unlikely that you can get around death by signing up for cryonics. In attempts to calculate overall odds for success from estimated chances of each step I've seen various numbers: 1:3, 1:4, 1:7, 1:15 and 1:400. I'm even more pessimistic: I calculated 1:600 when I first posted to lesswrong and have since revised down to 1:1000. To some people the probability doesn't matter, but because it's expensive and there are plenty of other things one can do with money, I don't think it's obviously the sensible thing to do.
(I also posted this on my blog.)
[1] Well, lose your heart and you're gone too. Except that we can make mechanical hearts and you stay the same person on receiving one. Not so much with a mechanical brain.
[2] Plastination is also an option, but it's not yet to a point where we can do it on even a mouse brain.