I feel like MIRI perhaps mispositioned FDT (their variant of UDT) as a clear advancement in decision theory, whereas maybe they could have attracted more attention/interest from academic philosophy if the framing was instead that the UDT line of thinking shows that decision theory is just more deeply puzzling than anyone had previously realized. Instead of one major open problem (Newcomb's, or EDT vs CDT) now we have a whole bunch more. I'm really not sure at this point whether UDT is even on the right track, but it does seem clear that there are some thorny issues in decision theory that not many people were previously thinking about:
- Indexical values are not reflectively consistent. UDT "solves" this problem by implicitly assuming (via the type signature of its utility function) that the agent doesn't have indexical values. But humans seemingly do have indexical values, so what to do about that?
- The commitment races problem extends into logical time, and it's not clear how to make the most obvious idea of logical updatelessness work.
- UDT says that what we normally think of as different approaches to anthropic reasoning are really different preferences, which seems to sidestep the problem. But is that actually right, and if so where are these preferences supposed to come from?
- 2TDT-1CDT - If there's a population of mostly TDT/UDT agents and few CDT agents (and nobody knows who the CDT agents are) and they're randomly paired up to play one-shot PD, then the CDT agents do better. What does this imply?
- Game theory under the UDT line of thinking is generally more confusing than anything CDT agents have to deal with.
- UDT assumes that the agent has access to its own source code and inputs as symbol strings, so it can potentially reason about logical correlations between its own decisions and other agents' as well defined mathematical problems. But humans don't have this, so how are humans supposed to reason about such correlations?
- Logical conditionals vs counterfactuals, how should these be defined and do the definitions actually lead to reasonable decisions when plugged into logical decision theory?
These are just the major problems that I was trying to solve (or hoping for others to solve) before I mostly stopped working on decision theory and switched my attention to metaphilosophy. (It's been a while so I'm not certain the list is complete.) As far as I know nobody has found definitive solutions to any of these problems yet, and most are wide open.
Allow me to rephrase. The problems are open, that's fair enough. But, the gist of your post seems to be: "Since coming up with UDT, we ran into these problems, made no progress, and are apparently at a dead end. Therefore, UDT might have been the wrong turn entirely." On the other hand, my view is: Since coming up with those problems, we made a lot of progress on agent theory within the LTA, which has implications on those problems among other things, and so far this progress seems to only reinforce the idea that UDT is "morally" correct. That is, not that any of the old attempted formalizations of UDT is correct, but that the intuition behind UDT, and its recommendation in many specific scenarios, are largely justified.
While writing this part, I realized that some of my thinking about IBH was confused, and some of my previous claims were wrong. This is what happens when I'm overeager to share something half-baked. I apologize. In the following, I try to answer the question while also setting the record straight.
An IBH agent considers different infra-Bayesian hypotheses starting from the most optimistic ones (i.e. those that allow guaranteeing the most expected utility) and working its way down, until it finds something that works[1]. Such algorithms are known as "upper confidence bound" (UCB) in learning theory. When multiple IBH agents interact, they start with each trying to achieve its best possible payoff in the game[2], and gradually relax their demands, until some coalition reaches a payoff vector which is admissible for it to guarantee. This coalition then "locks" its strategy, while other agents continue lowering their demands until there is a new coalition among them, and so on.
Notice that the pace at which agents lower their demands might depend on their priors (by affecting how many hypotheses they have to cull at each level), their time discounts and maaaybe also other parameters of the learning algorithm. Some properties this process has:
We can operationalize "CDT agent" as e.g. a learning algorithm satisfying an internal regret bound (see sections 4.4 and 7.4 in Cesa-Bianchi and Lugosi) and the process of self-modification as learning on two different timescales: a slow outer loop that chooses a learning algorithm for a quick inner loop (this is simplistic, but IMO still instructive). Such an agent would indeed choose IBH over CDT if playing a Prisoner's Dilemma (and would prefer an IBH variant that lowers its demands slowly enough to get more of the gains-of-trade but quickly enough to actually converge), whereas in the 3-player Prisoner's Dilemma there is at least some IBH variant that would be no worse than CDT.
If all players have metalearning in the outer loop, then we get dynamics similar to Chicken [version in which both swerving is better than flipping a coin[4]], where hard-bargaining (slower to lower demands) IBH corresponds to "straight" and soft-bargaining (quick to lower demands) IBH corresponds to "swerve". Chicken [this version] between two identical IBH agents results in both swerving. Chicken beween hard-IBH and soft-IBH results in hard-IBH getting a higher probability of going straight[5]. Chicken between two CDTs results in a correlated equilibrium, which might have some probability of crashing. Chicken between IBH and CDT... I'm actually not sure what happens off the top of my head, the analysis is not that trivial.
This is pretty similar to "modal UDT" (going from optimistic to pessimistic outcomes until you find a proof that some action can guarantee that outcome). I think that the analogy can be made stronger if the modal agent uses an increasingly strong proof system during the search, which IIRC was also considered before. The strength of the proof system then plays the role of "logical time", and the pacing of increasing the strength is analogous to the (inverse function of the) temporal pacing in which an IBH agent lowers its target payoff.
Assuming that they start out already knowing the rules of the game. Otherwise, they might start from trying to achieve payoffs which are impossible even with the cooperation of other players. So, this is a good model if learning the rules is much faster than learning anything to do with the behavior of other players, which seems like a reasonable assumption in many cases.
It is not that surprising that two sufficiently dissimilar agents can defect. After all, the original argument for superrational cooperation was: "if the other agent is similar to you, then it cooperates iff you cooperate".
I wish we had good names for the two version of Chicken.
This seems nicely reflectively consistent: soft/hard-IBH in the outer loop produces soft/hard-IBH respectively in the inner loop. However, two hard hard-IBH agents in the outer loop produce two soft-IBH agents in the inner loop. On the other hand, comparing absolute hardness between outer and inner loop seems not very meaningful, whereas comparing relative-between-players hardness between outer and inner loop is meaningful.