My hot take:
Not too surprising to me, considering what GPT-3 could do. However there were some people (and some small probability mass remaining in myself) saying that even GPT-3 wasn't doing any sort of reasoning, didn't have any sort of substantial understanding of the world, etc. Well, this is another nail in the coffin of that idea, in my opinion. Whatever this architecture is doing on the inside, it seems to be pretty capable and general.
I don't think this architecture will scale to AGI by itself. But the dramatic success of this architecture is evidence that there are other architectures, not too far away in search space, that exhibit similar computational efficiency and scales-with-more-compute properties, that are useful for more different kinds of tasks.
Stuart Russell gave his list of roadblocks, which is relevant as he (might) have just made a claim that was falsified by GPT3, in that same interview -
So dealing with partial observability, discovering new action sets, managing mental activity (?) and some others. This seems close to the list in an older post I wrote:
If AlphaStar is evidence that partial observability isn't going to be a problem, is GPT3 similarly evidence that language comprehension isn't going to be a problem, since GPT3 can do things like simple arithmetic? That leaves cumulative learning, discovering action sets and managing mental activity on Stuart's list.