INTRODUCTION
I recently got sparked by both Eliezer's post on Cryonics(http://lesswrong.com/lw/qx/timeless_identity/) and lsparrish's post on the economies of scale(http://lesswrong.com/lw/2f5/cryonics_wants_to_be_big/) that go in to cryonics, to do some actual research. Unfortunately, while both authors are happy to assert that there are "economies of scale" at work, there doesn't seem to actually be any published research on the matter. If I happen to be wrong, and someone else has more accurate numbers, I'll be pleasantly surprised to see myself corrected :)
Alcor Costs as of 1990 (http://www.alcor.org/Library/html/CostOfCryonicsTables.txt) seems like a reasonably reliable source of information. I'll be using them primarily because they were the only institute I could find that actually provides a break-down of their costs. The accompany article(http://www.alcor.org/Library/html/CostOfCryonics.html) suggests that the labor rates and equipment markups are actually excessively optimistic, but it gives a simple cost of $18,908.76 for neurosuspension (not whole body). Maintenance costs are given as $66.08 annually, which would require a $6600 investment to yield suitable interest. Call it $25K total.
Now, figuring out how economies of scale will affect this is tricky. I'll go ahead and run two estimates, but they're both reasonably crude. I'm trying to be optimistic in my math, because my starting premise is "cryonics is not financially viable, even with economies of scale", and I don't want my numbers to favour my starting hypothesis. It's also worth noting that I am assuming that the major cryonics facilities are already taking advantage of some economies of scale: it is quite true that one can get a 90% discount on liquid nitrogen, if you start at the price that someone would pay for a liter for personal usage; it is far less likely that a business that already dropped it's prices from $0.50/L to $0.13/L [1] can still claim a 90% savings by sufficient economies of scale.
----
METHOD 1
The actual cost of the chemicals and equipment won't scale dramatically - you can't get a 90% discount just because you're huge, unless the company is making a 10x profit off the item normally. A 50% reduction due to bulk savings is therefor a reasonably optimistic assumption.
Transportation is going to remain an issue, although certainly as this becomes more "main stream", you could imagine hospitals having a cryogenics ward and thus only having transportation when someone dies outside a hospital. A quick peruse of Google says ~50% of deaths occur in a hospital, so we can cut transportation costs in half right there. Obviously, transportation costs will also drop as there are more facilities, because distances decrease. However, it's also worth noting that, should we want this to be a truly universal option, transportation costs will rise to include transportation of people who do not live near major urban centers. We should also be able to claim economies of scale on the financial cost of vehicles and equipment. That probably works out about the same as equipment, so another 50% off; we gain a 75% economy of scale on transportation.
Labor is an interesting point: Alcor points out that their labor rates are generally 2-3 times less than you'd expect mainstream, and they use a lot of volunteers. It appears that the Cryonics Institute also has a large volunteer staff. Unless society radically changes, a reliance on volunteer labor is probably not a fair assumption as things scale up. However, we actually get the most powerful economies of scale here, because we're no longer looking at 48-80 hours of standby per person. You'll need a sufficient staff to handle catastrophes quickly (plane crashes, etc.), and thus some degree of standby is still essential for prompt responses. If we reduce standby from 48 hours down to 2 hours, then multiplying costs by 3 to bring pay up to market rates, we get a total savings of 87.5%!
Based on the summarized charges, it looks like the charges break down as approximately:
Transportation: $9,000
Equipment: $4,000
Labor: $15,000
Which, with these new adjustments:
Equipment (50% of original cost): $2,000
Transportation (25% of original cost): $2,250
Labor (12.5% of original cost): $1,875
That gives us a net total of $6,125, before maintenance fees are taken in to account.
---
METHOD 2
Alternately, we could extrapolate economies of scale based on observed data. The UK has centralized health care and spends $3,000 per capita on health care. The US is decentralized, and spends $7,500 per capita. So we have reason to assume that medical costs specifically can be cut down to 40% simply based on economies of scale.
Another approximation often used for hospitals is that there is a 10% increase in hospital productivity per doubling in size. Alcor currently has 100 patients. Scaling up to 150,000 is ~17 doublings or, being generous, a tripling of productivity, so cutting costs to ~33%. The two figures are reasonably close, so we'll go with the more favourable 33%.
Given an adjusted grand total of $18,908.76 (this excludes the remote charges and nursing fees), and taking only 33% of the cost yields about $6K. Once again, this figure ignores maintenance fees.
---
FINAL COSTS
Either way you do the math (and I'm quite welcome to being told I've been vastly pessimistic, if there's some supporting evidence I've missed in my searches), the final cost per person for cryonics is probably around $6K for the suspension.
Storage costs are another matter, and we will simply assume that storage is magically free, as I am attempting to be optimistic, and storage is probably going to realize the greatest economies of scale. It is worth noting that storage is only approximately 25% of the current expense! Alcor requires an additional $6600 fund and uses the interest from that to pay maintenance costs. CI cites maintenance costs that are 50% higher ($100 vs $66), and thus would presumably require a $10,000 fund. This is against an expense of $18K and $28K for each respective organization.
We thus have a final figure of $6K per person.
If you still think this is an overly pessimistic figure, keep in mind that the current market rate is $80,000 via Alcor, and Alcor's discussion of costs(http://www.alcor.org/Library/html/CostOfCryonics.html) explains a lot of why this is a really quite expensive service. The Cryonics Institute(http://www.cryonics.org/comparisons.html#Prices) charges $88,000 for a complete package (suspension, standby, and transport). Our $6,000 per person figure is a 90% savings due to economies of scale - which, except for the noted quirk of labor charges, is an exceedingly optimistic economy of scale for any enterprise to aim for!
---
CONCLUSIONS
The fundamental point here is that economies of scale only take us so far: We still need to pay professionals to do their job, we still need a vast amount amount of equipment and supplies to actually perform the operation, and we still want to attempt vitrification as soon after death as possible. While the actual storage of a human body might come cheaply (I have seen figures of $100/year for CI's whole-body option, and $66/year for Alcor's neuro-only option), even if we discount this to free, we are only managing a 25% savings; as Alcor's numbers demonstrate, storage is a relatively trivial if you assume an investment fund with a mere 2% return. Even the space requirements are modest; maybe 4 buildings the size of the empire state building each year.
The true expense of cryonics is getting someone vitrified, and doing it in a timely manner.
At present, approximately 150,000 people die per day, or 54,750,000 per year. At our optimistic rates of $6K per person, we are looking at a sum expense of $328,500,000,000 ($328 billion). This is approximately half of the US defense budget ($663.8 billion) and approximately 0.56% of the world GDP (58.26 Trillion)
In an ideal, rationalist world, is this a viable figure? Certainly.
In our actual world, with our actual politics, does this even vaguely approach a rational goal to shoot for today? It seems unlikely.
---
[1] http://cryonics.org/cryostats.html - About halfway down the page; the search term "Prior to getting the bulk liquid nitrogen" will locate the relevant paragraph.
All other sources are marked via in-line links
I found this a fascinating and amusing exercise. The 1990 Alcor article, "The Cost of Cryonics" and the accompanying tabular breakdown of the actual marginal costs that was used, in part, to generate the scenario above, were done by me in 1989-1990. [And you will note they have not been repeated since ;-0] If you look closely at that article you’ll also note that there is a disclaimer at the start which says, “these opinions are mine and do not represent those of Alcor…” That was there because the management was not happy with my projections, and instead backed those of Ralph Whelan http://www.alcor.org/cryonics/cryonics9310.pdf. If you go to page 10 of Ralph’s article you’ll see the projected growth rate for Alcor. The article also contains projections for “post-start-up” economies of scale. If you actually take the trouble to look at where Alcor is today, versus the “anticipated” numbers in that article, you’ll see that just about every assumption made was wrong. A short while ago, Brian Wowk tersely informed me during a phone call that my projections, if adjusted for inflation, constitute the actual current rate at which Alcor charges for cryopreservation services. I’m not sure if this is true, or not, because I haven’t bothered to re-run those numbers.
What is interesting in looking over the discussion here on Less Wrong is that all these various cost estimates don’t take into account the social and political context in which they are supposed to operate. Cryonics is very expensive if it is practiced as a high technology endeavor aimed at minimizing the extent to which it is (reasonably) technologically practical, damage from ischemia and from cryopreservation. And that was in the absence of skilled professionals who are vulnerable to malpractice judgments doing the procedures. When my estimates were done in the late 1980s, reasonably skilled, but non-professional people, were available to minister to cryonics patients. Any global scale-up of cryonics would have to factor in not only professionals’ fees and associated costs (licensing, regulation, litigation, etc.), but also the complex infrastructure required to implement such a technology on a widespread basis.
If you do that by, for instance, looking at the cost to provide EMS services to people in the US or the UK, you will find it is staggeringly expensive, and that far from there being economies of scale, the costs rise, dramatically. If you posit making Universal Cryonics a reality at a high level of technology, then you can easily bound the cost by simply using the existing medical system as your model. How much does it cost to respond to and to and transport a patient in cardiac arrest to a hospital ED? Add to that say, ~ $5,000 for ischemia-reperfusion medications and for en-route cooling. Then, figure out how much a typical Coronary Artery Bypass Graft (CABG) costs today and add to that ~ $25,000 for cryoprotectants, associated IP licensing, and for extended use of the OR for CPA perfusion. From there, you can try to figure cool-down costs. If you like, you can just plug in existing numbers for cool-down. What you’ll find if you do this is that cryonics will cost about $170,000 to $250,000 for the up-front part of the procedure. And that is being very, very conservative and assuming that automation can be used to pinch hit for expensive human labor.
The only place where there is a reasonable possibility for economies of scale is in storage. Mostly, those economies of scale have already been reached by Alcor and CI for the type of storage they are using. In other words, if you want further economies of scale you have to build BIG, because the only way you get more efficient is by exploiting the reduction in heat leak that is to be had by decreasing the surface to volume ratio of your cryogenic storage system. That can most efficiently be done by building very large spherical storage vessels. Of course, practical considerations will kick in at some point and, unless you want to build gigantic storage vessels that you just pitch patients into like cord wood, you’ll need a way to access individual patients at will. This requirement greatly constrains the simplicity of the engineering it is possible to use, and thus increases the costs. Still, I would guess that you might halve existing neuro storage costs.
Finally, once you have a society that takes cryonics seriously, not only are they going to start suing for bad care, they are going to want protections to be present against sudden, undetected cardiac arrest and against myriad other contingencies that could frustrate cryopreservation andthat will also increase cost. Finally, they are going to want protection against existential risks to cryopreserved patients. Consider the situation today with nuclear power plants. These energy generating pieces of infrastructure are very dangerous if mishandled, sabotaged or subjected to fire, earthquake, flooding, or any of a number of other man-made or natural calamities. As a consequence, these plants are subject to very costly uber-engineering AND REGULATION. And even with such costly precautions, they are still sadly vulnerable, as recent experience attests.
Completely leaving aside the issue of how securely people will want to store their cryopreserved relatives, there can be little doubt about how securely they will want to store themselves once they are in a vulnerable and indeed completely helpless state. That means a level of engineering that is at least comparable to, or better than that currently employed in nuclear power installations. And there will be pragmatic limits on economies of scale because few sane people would buy off on the idea of 4 or 5 mega-regional storage facilities for the whole planet, or even for the whole of the US.
The take home message is simple. Barring absolutely “Singularity-style” improvements in technology and wealth, cryonics is going to not only remain an expensive proposition; it is going to get a lot more expensive. For a mature “universal cryonics procedure” in the framework of existing/foreseeable technology, my guess would be that the cost would be between $500,000 and $750,000 per person in the West, and perhaps half of that in the Developing World – but with a lot more risk (no hardened storage facilities, more risk of unattended death, and so on).
If you pull cryonics out of the context of a “universal, mainstream operation,” then costs could be very different. – Mike Darwin
Thank you for the very insightful response!
The main trade off, I think, is whether we view cryonics as a medical procedure or a universal human right. Your numbers seem spot-on if we're trying to prevent every single death, and pessimistically assuming that cryopreservation must be done immediately after death.
If instead this is simply a medical procedure for those that can be saved (such as current treatments for heart attacks - rushed to a hospital, but without any special standby), or something that people routinely volunteer for when their health is fa... (read more)