A researcher in CS theory, AI safety and other stuff.
Seeing some confusion on whether AI could be strictly stronger than AI+humans: A simple argument there may be that - at least in principle - adding more cognition (e.g. a human) to a system should not make it strictly worse overall. But that seems true only in a very idealized case.
One issue is incorporating human input without losing overall performance even in situation when the human's advice is much wore than the AI's in e.g. 99.9% of the cases (and it may be hard to tell apart the 0.1% reliably).
But more importantly, a good framing here may be the optimal labor cost allocation between AIs and Humans on a given task. E.g. given a budget of $1000 for a project:
This is still not a very well-formalized definition as even the artists and philosophers already use some weak AIs efficiently in some part of their business, and a boundary needs to be drawn artificially around the core of the project.
Although even in AI period with a well-aligned AI, the humans providing their preferences and feedback are a very valuable part of the system. It is not clear to me whether to include this in cyborg or AI period.
I assume you mean that we are doomed anyway so this technically does not change the odds? ;-)
More seriously, I am not assuming any particular level of risk from LLMs above, though, and it is meant more as a humorous (if sad) observation.
The effect size also isn't the usual level of "self-fulfilling" as this is unlikely to have influence over (say) 1% (relative). Though I would not be surprised if some of the current Bing chatbot behavior is in nontrivial part caused by the cultural expectations/stereotypes of an anthropomorphized and mischievous AI (weakly held, though).
(By the way, I am not at all implying that discussing AI doom scenarios would be likely to significantly contribute to the (very hypothetical) effect - if there is some effect, then I would guess it stems from the ubiquitous narrative patterns and tropes of our written culture rather than a few concrete stories.)
It is funny how AGI-via-LLM could make all our narratives about dangerous AIs into a self-fulfilling prophecy - AIs breaking their containment in clever and surprising ways, circumventing their laws (cf. Asimov's fiction), generally turning evil (with optional twisted logic), becoming self-preserving, emotion-driven, or otherwise more human-like. These stories being written to have an interesting narrative and drama, and other works commonly anthropomophising AIs likely does not help either.
John's comment about the fundamental distinction between role-playing what e.g. a murderous psycho would say and actually planning murder fully applies here, and stories about AIs may not be a major concern of alignment now (or more precisely they fall within a larger problem of dealing with context, reality vs fiction, assistant's presumed identity/role, subjectivity of opinions present in the data etc.), but it is a pattern that is a part of the prior about the world as implied by the current training data (i.e. internet scrapes) and has to be somehow actively dealt with to be actually harmless (possibly by properly contextualizing the identity/role of the AI as something else than the existing AI trope).
The concept of "interfaces of misalignment" does not mainly point to GovAI-style research here (although it also may serve as a framing for GovAI). The concrete domains separated by the interfaces in the figure above are possibly a bit misleading in that sense:
For me, the "interfaces of misalignment" are generating intuitions about what it means to align a complex system that may not even be self-aligned - rather just one aligning part of it. It is expanding not just the space of solutions, but also the space of meanings of "success". (For example, one extra way to win-lose: consider world trajectories where our preferences are eventually preserved and propagated in a way that we find repugnant now but with a step-by-step endorsed trajectory towards it.)
My critique of the focus on "AI developers" and "one AI" interface in isolation is that we do not really know what the "goal of AI alignment" is, and it works with a very informal and a bit simplistic idea of what aligning AGI means (strawmannable as "not losing right away").
While a broader picture may seem to only make the problem strictly harder (“now you have 2 problems”), it can also bring new views of the problem. Especially, new views of what we actually want and what it means to win (which one could paraphrase as a continuous and multi-dimensional winning/losing space).
Shahar Avin and others have created a simulation/roleplay game where several world powers, leaders & labs go through the years between now and creation of AGI (or anything substantially transformative).
https://www.shaharavin.com/publication/exploring-ai-futures-through-role-play/
While the topic is a bit different, I would expect there to be a lot to take from their work and experience (they have ran it many times and iterated the design). In particular, I would expect some of the difficulty balancing "realism" (or the space of our best guesses) with playability but also genre stereotypes and narrative thinking (RPGs often tend to follow an antrophomorphic narrative and fun rather than what is likely, more so with unclear topics like "what would/can AGI do" :-)
[4] AI safety relevant side note: The idea that translations of meaning need only be sufficiently reliable in order to be reliably useful might provide an interesting avenue for AI safety research. [...]
I also see this as an interesting (and pragmatic) research direction. However, I think its usefulness hinges on ability to robustly quantify the required alignment reliability / precision for various levels of optimization power involved. Only then it may be possible to engineer demonstrably safe scenarios with alignment quality tracking the optimization power growth (made easier by a slower opt. power growth).
I think that this is a very hard task, both for unknown unknowns around strong optimizers, practically (we still need increasingly good alignment), and also fundamentally (if we can define this rigorously, perfect alignment would be a natural limit).
On the other hand, a cascade of practically sufficient alignment mechanisms is one of my favorite ways to interpret Paul's IDA (Iterated Distillation-Amplification), this happening sufficiently reliably at every distillation step.
Re language as an example: parties involved in communication using language have comparable intelligence (and even there I would say someone just a bit smarter can cheat their way around you using language).
Thanks for the (very relatable) post!
I find slack extremely valuable. I agree with the observation that "real-world" slack likely isn't the main blocker of resourcefulness (as you use the term) for many people, including me. I am not sure I would call the bag of self-imposed limitations, licenses and roles also (a lack of) slack, though - at least for me "slack within identity/role" does not map to the meat of the problem of agency in ownership/role/something. I would be excited to read more on cultivating intrapersonal freedom!
I am unsure about the self-alignment you point to in the last part, especially in context of resulting decrease in agency (I assume you point more to activity/initiative than any pursuing of your goals, which may be e.g. more passive). I often see at least two interpretations of "self-alignment" (with many intermediate variants):
* Finding out what my values are (in particular values of different parts/subagents of myself) and how they interact, and then trying to find a good way to first reconcile and then satisfy most (if not all) of them. I think this may easily make one less productive even when done "right" - especially if one repressed some desires/values before, or it turns out you have some deeper uncertainty about what you want or what some values/desires are after (and then it may be optimal to first figure some of it out, with the risk of this taking a lot of time).
(I still endorse this self-alignment to a degree and I think it often is a net improvement, possibly after some investment, but I just can't really tell when it would not be beneficial or just take long years in therapy. There is so much more to the whole topic and process!)
* Try to make all my goals (and of my parts/subagents) more aligned with each other by modifying them. In small doses, this may be e.g. just habit building but undertaken seriously, I would consider it outright dangerous (with similar dangers of repressing values e.g. as a misused IDC, but also amplifying possibly local or extreme values).
How do you align your actions&goals with your values if it turns out your values are a) partially hidden (c.f. Elephant in the Brain) and b) contradicting each other?
(Side note: The second property of values is perhaps a cheap, nasty trick of evolution: Implementing complex multi-criterial optimization as bag of independent, contradictory "values" with convex (=diminishing) penalty functions, pushing the poor animal "somewhere in the middle" of the state space while at least somewhat frustrated even in the optimum).
Side-remark: Individual positions and roles in society seem to hold a middle ground here: When dealing with a concrete person who holds some authority (imagine a grant maker, a clerk, a supervisor, ...), modelling them internally as a person or as an institution brings up different expectations of motivations and values - the person may have virtues and honor where I would expect the institution to have rules and possibly culture (where principles may be a solid part of the rules or culture, but that feels somewhat less common, weaker or more prone to Goodharting as PR; I may be confused here, though).
This brings up the concept of theory of mind for me, especially when thinking about how this applies differently to individual people, to positions/roles in society, and e.g. to corporations. In particular, I would need to have a theory of mind of an entity to ascribe "honor" to it and expect it to uphold it.
A person can convince me that their mind is built around values or principles and I can reasonably trust them to uphold them in the future more likely than not. I believe that for humans, pretending is usually difficult or at least costly.
What a corporation evokes, on the other hand, is not very mind-like. For example: I expect it to uphold bargains when it would be costly not to (in lawsuits, future sales, brand value, etc.), I expect leadership changes, and I expect it to be hard to understand its reasoning (office politics and other coordination problems). (The corporation is also aware of this and so may not even try to appear mind-like.)
An interesting exception may be companies that are directed by a well-known principled figure, where having a theory of their mind again makes some sense. (I suspect that is why many brands make effort to create a fictitious "principled leader figure" ).
"PR", as Anna describes it, seems to be a more direct (if hard) optimization process that is in principle available to all.
I want to note that I am still mildly confused how a reputation of a company that would be based solely on its track record fits into this - I would still expect it to (likely) continue in the trend even having no model of its inner workings or motivations.
The transitions in more complex, real-world domains may not be as sharp as e.g. in chess, and it would be useful to model and map the resource allocation ratio between AIs and humans in different domains over time. This is likely relatively tractable and would be informative for prediction of future development of the transitions.
While the dynamic would differ between domains (not just the current stage but also the overall trajectory shape), I would expect some common dynamics that would be interesting to explore and model.
A few examples of concrete questions that could be tractable today:
While in many areas the fraction of resources spent on (advanced) AIs is still relatively small, it is ramping up quite quickly and even those may provide informative to study (and develop methodology and metrics for, and create forecasts to calibrate our models).