Less Wrong is a community blog devoted to refining the art of human rationality. Please visit our About page for more information.

TimS comments on The Best Textbooks on Every Subject - Less Wrong

167 Post author: lukeprog 16 January 2011 08:30AM

You are viewing a comment permalink. View the original post to see all comments and the full post content.

Comments (327)

You are viewing a single comment's thread. Show more comments above.

Comment author: orthonormal 24 April 2013 01:05:09AM 7 points [-]

Calculus: Spivak's Calculus over Thomas' Calculus and Stewart's Calculus. This is a bit of an unfair fight, because Spivak is an introduction to proof, rigor, and mathematical reasoning disguised as a calculus textbook; but unlike the other two, reading it is actually exciting and meaningful.

Analysis in R^n (not to be confused with Real Analysis and Measure Theory): Strichartz's The Way of Analysis over Rudin's Principles of Mathematical Analysis, Kolmogorov and Fomin's Introduction to Real Analysis (yes, they used the wrong title; they wrote it decades ago). Rudin is a lot of fun if you already know analysis, but Strichartz is a much more intuitive way to learn it in the first place. And after more than a decade, I still have trouble reading Kolmogorov and Fomin.

Real Analysis and Measure Theory (not to be confused with Analysis in R^n): Stein and Shakarchi's Measure Theory, Integration, and Hilbert Spaces over Royden's Real Analysis and Rudin's Real and Complex Analysis. Again, I prefer the one that engages with heuristics and intuitions rather than just proofs.

Partial Differential Equations: Strauss' Partial Differential Equations over Evans' Partial Differential Equations and Hormander's Analysis of Partial Differential Operators. Do not read the Hormander book until you've had a full course in differential equations, and want to suffer; the proofs are of the form "Apply Theorem 3.5.1 to Equations (2.4.17) and (5.2.16)". Evans is better, but has a zealot's disdain of useful tools like the Fourier transform for reasons of intellectual purity, and eschews examples. By contrast, Strauss is all about learning tools, examining examples, and connecting to real-world intuitions.

Comment author: TimS 24 April 2013 01:15:05AM 1 point [-]

Spivak was a lot of fun - and very readable. Amusing footnotes, too. (I still remember the rant against Newtonian notation for derivatives).

Comment author: [deleted] 24 April 2013 01:17:28AM 0 points [-]

If you like Spivak, they've reprinted his five volume epic on differential geometry. It's pretty glorious.