With the release of Rohin Shah and Eliezer Yudkowsky's conversation, the Late 2021 MIRI Conversations sequence is now complete.
This post is intended as a generalized comment section for discussing the whole sequence, now that it's finished. Feel free to:
- raise any topics that seem relevant
- signal-boost particular excerpts or comments that deserve more attention
- direct questions to participants
In particular, Eliezer Yudkowsky, Richard Ngo, Paul Christiano, Nate Soares, and Rohin Shah expressed active interest in receiving follow-up questions here. The Schelling time when they're likeliest to be answering questions is Wednesday March 2, though they may participate on other days too.
Cool, I like this example.
I think the thing I'm interested in is "what are our estimates of the output of search processes?". The question we're ultimately trying to answer with a model here is something like "are humans, when they consider a problem that could have attempted solutions of many different forms, overly optimistic about how solvable those problems are because they hypothesize a solution with inconsistent features?"
The example of "a number divisible by 2 and a number divisible by 4" is an example of where the consistency of your solution helps you--anything that satisfies the second condition is already satisfying the first condition. But importantly the best you can do here is ignore superfluous conditions; they can't increase the volume of the solution space. I think this is where the systematic bias is coming from (that the joint probability of two conditions can't be higher than the maximum of those two conditions, where the joint probability can be lower than the minimum of the two, and so the product isn't an unbiased estimator of the joint).
For example, consider this recent analysis of cultured meat, which seems to me to point out a fundamental inconsistency of this type in people's plans for creating cultured meat. Basically, the bigger you make a bioreactor, the better it looks on criteria ABC, and the smaller you make a bioreactor, the better it looks on criteria DEF, and projections seem to suggest that massive progress will be made on all of those criteria simultaneously because progress can be made on them individually. But this necessitates making bioreactors that are simultaneously much bigger and much smaller!
[Sometimes this is possible, because actually one is based on volume and the other is based on surface area, and so when you make something like a zeolite you can combine massive surface area with tiny volume. But if you need massive volume and tiny surface area, that's not possible. Anyway, in this case, my read is that both of these are based off of volume, and so there's no clever technique like that available.]
Maybe you could step me thru how your procedure works for estimating the viability of cultured meat, or the possibility of constructing a room temperature <10 atm superconductor, or something?
It seems to me like there's a version of your procedure which, like, considers all of the different possible factory designs, applies some functions to determine the high-level features of those designs (like profitability, amount of platinum they consume, etc.), and then when we want to know "is there a profitable cultured meat factory?" responds with "conditioning on profitability > 0, this is the set of possible designs." And then when I ask "is there a profitable cultured meat factory using less than 1% of the platinum available on Earth?" says "sorry, that query is too difficult; I calculated the set of possible designs conditioned on profitability, calculated the set of possible designs conditioned on using less than 1% of the platinum available on Earth, and then <multiplied sets together> to give you this approximate answer."
But of course that's not what you're doing, because the boundedness prevents you from considering all the different possible factory designs. So instead you have, like, clusters of factory designs in your map? But what are those objects, and how do they work, and why don't they have the problem of not noticing inconsistencies because they didn't fully populate the details? [Or if they did fully populate the details for some limited number of considered objects, how do you back out the implied probability distribution over the non-considered objects in a way that isn't subject to this?]