Here's another installment of rationality quotes. The usual rules apply:
- Please post all quotes separately, so that they can be upvoted or downvoted separately. (If they are strongly related, reply to your own comments. If strongly ordered, then go ahead and post them together.)
- Do not quote yourself.
- Do not quote from Less Wrong itself, Overcoming Bias, or HPMoR.
- No more than 5 quotes per person per monthly thread, please.
I do want to point out that, while I agree with your general points, I think that unless the proponents put numerical estimates up beforehand, it's not quite fair to assume they meant "it will be statistically significant in a sample size of N at least 95% of the time." Even if they said that, unless they explicitly calculated N, they probably underestimated it by at least one order of magnitude. (Professional researchers in social science make this mistake very frequently, and even when they avoid it, they can only very rarely find funding to actually collect N samples.)
I haven't looked into this study in depth, so semi-related anecdote time: there was recently a study of calorie restriction in monkeys which had ~70 monkeys. The confidence interval for the hazard ratio included 1 (no effect), and so they concluded no statistically significant benefit to CR on mortality, though they could declare statistically significant benefit on a few varieties of mortality and several health proxies.
I ran the numbers to determine the power; turns out that they couldn't have reliably noticed the effects of smoking (hazard ratio ~2) on longevity with a study of ~70 monkeys, and while I haven't seen many quoted estimates of the hazard ratio of eating normally compared to CR, I don't think there are many people that put them higher than 2.
When you don't have the power to reliably conclude that all-cause mortality decreased, you can eke out some extra information by looking at the signs of all the proxies you measured. If insurance does nothing, we should expect to see the effect estimates scattered around 0. If insurance has a positive effect, we should expect to see more effect estimates above 0 than below 0, even though most will include 0 in their CI. (Suppose they measure 30 mortality proxies, and all of them show a positive effect, though the univariate CI includes 0 for all of them. If the ground truth was no effect on mortality proxies, that's a very unlikely result to see; if the ground truth was a positive effect on mortality proxies, that's a likely result to see.)
Incidentally, how did you do that?