This thread was created on 3/8/2020, or approximately one million years ago in virus time. It’s getting pretty bloated now, and a lot of things that were high value at the time have been eclipsed by events, making karma not a very useful sorting tool. So I’m declaring this thread finished, and asking everyone to move over to the April Coronavirus Open Thread.
Interested in what happened in this thread? Here’s the timeless or not-yet-eclipsed highlights:
- Scott Alexander comes up with Hammer and Dance 6 days before Tomas Pueyo
- Spiracular on why SARS-Cov-2 is unlikely to be lab-created.
- Two documents collating estimates of basic epidemiological parameters, in response to this thread
- Discussion on whether the tuberculosis vaccine provides protection against COVID-19.
- Suggestive evidence that COVID-19 removes sense of taste and smell.
- Could copper tape be net harmful?
Reading the Ioannidis article, it seems to say that he did his own calculations, and he doesn't show them. Okay.
I'm curious about this, so I'm going to try a ballparking estimate myself.
Tl;dr I intially arrived at a result that suggested 0.125% was way off, but then found better info on the cruise ship's age distribution and had to revise my judgment. I now find it debatable whether 0.125% is defensible or not, but it's not "way off." My own estimate would be more in the ballpark of 0.3%, but I don't anymore consider the cruise ship to be evidence for IFR estimates at 0.5% or higher.
Update March 24th: In the couple of days, 3 new patients who had tested positive on the Diamond Princess have died. In addition, the Wikipedia article has been edited to list another death that previously hadn't been included. So total deaths per confirmed cases on the Diamond Princess are now 11 / 700 instead of 7 / 700. All my calculations below are based on the older, outdated numbers. To get the most updated estimates, just multiply the results below by 11/7.
---
Note that I have never done age adjustments for anything, so I have no idea what the proper methdology would be. I'm just curious to see if 0.125% is potentially reasonable rather than (as my current intuition suggests) very dubious.
From this paper, I found the following info:
At the end of the outbreak, roughly 700 people had tested positive. I'm going to assume that the 66 patients not yet in the above statistics fall into age categories in the same proportion. So a bit more than two thirds of the 66 patients get added to the 476 figure for people aged 60 and older.
With this adjustment, we have 700 diagnosed cases, of which an estimated 525 patients were aged 60 and older. Of those 700 diagnosed cases, 7 people died. 525 out of 700 corresponds to 75%. (I'm going to mostly ignore the death risk for people below age 60 for the analysis below, because it will be negligible given that people older than that anyway make up the majority share.)
This wikipedia article on US demographics says the following:
Eyeballing this, let's go with 22% of the population at age 60 or older.
75 divided by 22 is roughly 3.4, so this naively suggests that the cruise ship's demographic was roughly 3.4 times more susceptible to dying from SARS-CoV-2. If I divide the observed IFR of 1% by 3.4, I get 0.3%. Why does Ioannidis get 0.125% instead of 0.3?
Moreover, it seems to me that 0.3% must be an underestimate because I assume that even though the cruise ship population is substantially older on average than the US population, I would think that this effect will disappear (or even reverse) at the extremes, once we look at the percentage of exceptionally old people (e.g., aged 80 and above, age 85 and above, etc.). Because Covid-19 is particularly fatal for the very oldest people, I expect the 0.3% figure to contain a substantial degree of overcorrection. Especially also because elderly people with the most severe pre-existing health conditions are likely heavily underrepresented on cruise ships. This effect could be really quite significant: It's not even totally obvious that a downward adjustment of the 1% IFR observed on the Diamond Princess is warranted. It's probably warranted, but depending on how strongly cruise ship passengers are pre-selected against having unusually bad health, and depending on how strongly pre-existing health conditions affect someone's survival prospect for Covid-19, it's conceivable that the 1% figure doesn't need to be downward adjusted at all.
To conclude, I don't understand how age adjustments for SARS-Cov-2 infections on the Diamond Princess can drive down the estimated IFR substantially below 0.5%. 0.5% seems closer to a lower bound to me than anything else. (Of course, those are point estimates. I don't have strong views on whether 0.125% is outside some appropriate confidence interval, but my impression was that 0.125% was Ioannidis's point estimate, and interpreted as such, it seems clearly much too low!)
UPDATE: Oh I see. I found an age table that I had overlooked initially. It turns out cruises are really popular for people at age 70-79 (there are about 20% more people of that age than 60-69, whereas it's the other way around for US demographics). This distribution makes Ioannidis's figures look more plausible, though the difference doesn't seem large enough to fully bridge the gap between 0.3% and 0.125%, especially because the 80-89 bracket seems to be represented proportionally again. Still, I don't anymore think that 0.125% is horribly off.