Here's the new thread for posting quotes, with the usual rules:
- Please post all quotes separately, so that they can be voted up/down separately. (If they are strongly related, reply to your own comments. If strongly ordered, then go ahead and post them together.)
- Do not quote yourself
- Do not quote comments/posts on LW/OB
- No more than 5 quotes per person per monthly thread, please.
I don't think it's fair to blame the mathematical statisticians. Any mathematical statistician worth his / her salt knows that the Central Limit Theorem applies to the sample mean of a collection of independent and identically distributed random variables, not to the random variables themselves. This, and the fact that the t-statistic converges in distribution to the normal distribution as the sample size increases, is the reason we apply any of this normal theory at all.
Press's comment applies more to those who use the statistics blindly, without understanding the underlying theory. Which, admittedly, can be blamed on those same mathematical statisticians who are teaching this very deep theory to undergraduates in an intro statistics class with a lot of (necessary at that level) hand-waving. If the statistics user doesn't understand that a random variable is a measurable function from its sample space to the real line, then he/she is unlikely to appreciate the finer points of the Central Limit Theorem. But that's because mathematical statistics is hard (i.e. requires non-trivial amounts of work to really grasp), not because the mathematical statisticians have done a disservice to science.