Two or three months ago, my trip to Las Vegas made me ponder the following: If all gambles in the casinos have negative expected values, why do people still engage in gambling - especially my friends fairly well-versed in probability/statistics?
Suffice it to say, I still have not answered that question.
On the other hand, this did lead me to ponder more about whether rational behavior always involves making choices with the highest expected (or positive) value - call this Rationality-Expectation (R-E) hypothesis.
Here I'd like to offer some counterexamples that show R-E is clearly false, to me at least. (In hindsight, these look fairly trivial but some commentators on this site speak as if maximizing expectation is somehow constitutive of rational decision making - as I used to. So, it may be interesting for those people at the very least.)
- Suppose someone offers you a (single trial) gamble A in which you stand to gain 100k dollars with probability 0.99 and stand to lose 100M dollars with probability 0.01. Even though expectation is -98999000 dollars, you should still take the gamble since the probability of winning on a single trial is very high - 0.99 to be exact.
- Suppose someone offers you a (single trial) gamble B in which you stand to lose 100k dollars with probability 0.99 and stand to gain 100M dollars with probability 0.01. Even though expectation is 98999000 dollars, you should not take the gamble since the probability of losing on a single trial is very high - 0.99 to be exact.
A is a gamble that shows that choices with negative expectation can sometimes lead to net pay off.
B is a gamble that shows that choices with positive expectation can sometimes lead to net costs.
As I'm sure you've all noticed, expectation is only meaningful in decision-making when the number of trials in question can be large (or more precisely, large enough relative to the variance of the random variable in question). This, I think, in essence is another way of looking at Weak Law of Large Numbers.
In general, most (all? few?) statistical concepts make sense only when we have trials numerous enough relative to the variance of the quantities in question.
This makes me ponder a deeper question, nonetheless.
Does it make sense to speak of probabilities only when you have numerous enough trials? Can we speak of probabilities for singular, non-repeating events?
I did spend some time thinking about exactly what this means after writing it. It seems to me there is a meaningful sense in which probabilities can be more or less uncertain and I haven't seen it well dealt with by discussions of probability here. If I have a coin which I have run various tests on and convinced myself it is fair then I am fairly certain the probability of it coming up heads is 0.5. I think the probability of the Republicans gaining control of Congress in November is 0.7 but I am less certain about this probability. I think this uncertainty reflects some meaningful property of my state of knowledge.
I tentatively think that this sense of 'certainty' reflects something about the level of confidence I have in the models of the world from which these probabilities derive. It also possibly reflects something about my sense of what fraction of all the non-negligibly relevant information that exists I have actually used to reach my estimate. Another possible interpretation of this sense of certainty is a probability estimate for how likely I am to encounter information in the future which would significantly change my current probability estimate. A probability I am certain about is one I expect to be robust to the kinds of sensory input I think I might encounter in the future.
This sense of how certain or uncertain a probability is may have no place in a perfect Bayesian reasoner but I think it is meaningful information to consider as a human making decisions under uncertainty. In the context of the original comment, low probabilities are associated with rare events and as such are the kinds of thing we might expect to have a very incomplete model of or a very sparse sampling of relevant data for. They are probabilities which we might expect to easily double or halve in response to the acquisition of a relatively small amount of new sensory data.
Perhaps it's as simple as how much you update when someone offers to make a bet with you. If you suspect your model is incomplete or you lack much of the relevant data then someone offering to make a bet with you will make you suspect they know something you don't and so update your estimate significantly.
Here's another example. Suppose you're drawing balls from a large bin. You know the bin has red and white balls, but you don't know how many there are of each.
After drawing two balls, you have one white and one red ball.
After drawing 100,000 balls, you have 50,000 white and 50,000 red balls.
In both cases you might assign a probability of .5 for drawing a white ball next, but it seems like in the n = 100,000 case you should be more certain of this probability ... (read more)