Zvi, I would love to see you making an analysis of Brazil and I'd compare it to my own thinking and calibrate myself on my own predictions. I strongly believe you are currently the best at what you're doing and I would be grateful if you spent at least some time reasoning about our situation here and making some predictions.
Holy smokes! 6 million per day is the same figure I was getting using this approach:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009374
This paper is underappreciated
An IHME report came out over the weekend. I was pleasantly surprised by it contents. Its conclusions and projections broadly match what I said in the last Omicron post, with only relatively minor obvious nonsense, and seemed worth their own post to break down.
Headline Takeaways
I too expect reported cases to peak during the third week of January (to be clear, when I say we will peak on 19 January, I mean cases detected on 19 January, not infections that happen on 19 January. If counting from initial infections, I’d have said 16 January, but it’s hard to ever know what the actual lag was there.)
Once the peak arrives, a sharp decline is to be expected shortly thereafter, although I still expect cases to remain elevated (above pre-Omicron levels) for several months.
Note that ‘more than 50%’ sounds like the kind of thing one says when one does not want to make a precise prediction, but there are graphs later on.
That sounds like a best case scenario. If hospital admissions peak at twice last winter, but half of them are incidental, then things won’t be substantially worse than last winter. We survived last winter. Deaths peaking below 2,000 per day means they won’t even double once, and the peak will come within a few weeks. Expecting them to peak by month’s end seems wrong given the historical lag times, but it’s only a difference of a few weeks.
Words of high wisdom follow, noting that all of this is baked in.
It is essentially too late to do anything but mitigation. If the baseline scenario is as they describe (and roughly as I predict as well) then only those with a strong desire to avoid infection should do much. So this, very much this:
Quite right. Doing constant testing of asymptomatic schoolchildren makes no sense. My four year old son has had to have four tests in the past week alone.
There’s so much both right and wrong about this caveat:
The part that’s very right is that the potential lack of testing, and the uncertainty about how many infections are asymptomatic, create extreme uncertainty in measured numbers. However, when they say there’s uncertainty about the ‘course of the Omicron wave’ they are implying that all of the uncertainty is in the measurement of that wave, and any deviations from their projections reflect these changes in measurement.
Their Summary and Graphs
Here is their summary from January 3, edited for readability.
A graph I found interesting, on detection rates over time, I’m surprised they think the decline in detection rates was this small recently:
A graph that should make one assume their methodology is wrong:
That number in Vermont is obviously stupid. There’s no way Covid kills people twice as often there as in all but a handful of other states, including all the states around it. I don’t believe the estimates in the other four outlier states either. It’s so weird to put a graph like this in one’s paper and not notice it doesn’t make any sense. Also worth noting that larger population states tend to have lower IFRs here (California, Texas, Florida and Ohio all <0.2%), in a way that doesn’t match anything physically happening. My guess is they are underestimating the true number of cases in New York relative to those places.
I think mobility is a good measure of extreme prevention measures, but a quite poor measure of non-extreme measures. So this is telling us that almost no one is taking extreme measures. I am surprised. If nothing else, something like 10% of people have Covid-19 right now, by their own estimates. Shouldn’t their lack of movement show up on this graph?
I simply don’t believe this graph here?
This shows no increase in test usage. If that’s true, then why are tests suddenly impossible to find? Why are systems backed up? Why does everyone I know report being told to test a lot more? If the answer is ‘we were already at our limit’ then I guess I basically disbelieve that, given we were then at it for three months and nothing changed.
Here are their vaccine effectiveness estimates, presumably unboosted. Note that they continue to believe that the vaccines were still holding up exceptionally well against Delta, and they weren’t losing that with time very much, which suggests that ‘using clinical trial data’ wasn’t serving them well here and they didn’t want to notice.
Projection Graphs
There are five scenarios here but there’s a reason I don’t talk about them before this, they all are effectively the same because it’s too late for prevention to do much.
They have us peaking at roughly 6 million infections per day, which is almost 2% of the population. When I did simple spreadsheet modeling myself I got the peak being somewhat lower and closer to 4 million per day.
One place I definitely disagree is that I do not expect this much drop-off to happen this fast after we peak. Behaviors will adjust, and I do not believe they are taking this into account. This failure matches my understanding of how they’re generating their models, so it’s easy to assume this is as simple a mistake as it appears.
I notice I’m confused how higher severity of Omicron scenario (which I do not believe is going to happen on its merits) causes a lot more hospitalizations but not many more deaths, since those extra hospitalized people should be a big source of more deaths. On top of that, if we did get to 450k hospitalizations, presumably we’d run out of resources in a lot of places.
They note other model projections for deaths.
The SIJKalpha model is clearly obvious nonsense. Their GitHub brags about how fast you can run the model rather than explaining what they’re doing. For deaths to peak this late and this high would only make sense if you think we’re mostly catching all the Omicron cases and there’s little dark matter out there? But that’s obviously quite wrong. As a sanity check I looked at their United Kingdom projections, and, well, no.
The CDC model seems like what one would expect if you had some dark matter but much less than you’d expect from the data points we’ve seen, so things don’t peak for a while longer and the true IFR is higher because Omicron is more severe. I don’t think this can match the data either, but it’s at least somewhat less insane.
The London College projection was from early December so I’m not going to be too harsh on them, but it doesn’t seem like it’s predicting the past all that well.
Delphi seems to be in the same universe as the IHME model, and the results seem plausible. Having MIT give you a sanity check seems strong.
Conclusion and Updates
There’s some overlap between my toy modeling and what IHME is doing. They’re more sophisticated in some key ways, although they seem to not be factoring in the control system properly, which is a big omission. What they are predicting here is confirmation that my expectations are reasonable, as is the Delphi/MIT projection.
I’d love to update my confidence levels a lot, but all these models are making similar predictions largely because they are making similar modeling assumptions. Thus, I can be confident that these are the correct predictions to be made given what I think are good and reasonable assumptions, and they line up with the data we see in various places, but this does not protect against errors in those assumptions.
Despite that, I do think this was worth some amount of update, and my main changes are: