From Gene Expression by Razib Khan who some of you may also know from the old gnxp site or perhaps from his BHTV debate with Eliezer.
Fifteen years ago John Horgan wrote The End Of Science: Facing The Limits Of Knowledge In The Twilight Of The Scientific Age. I remain skeptical as to the specific details of this book, but Carl’s write-up in The New York Times of a new paper in PNAS on the relative commonness of scientific misconduct in cases of retraction makes me mull over the genuine possibility of the end of science as we know it. This sounds ridiculous on the face of it, but you have to understand my model of and framework for what science is. In short: science is people. I accept the reality that science existed in some form among strands of pre-Socratic thought, or among late antique and medieval Muslims and Christians (not to mention among some Chinese as well). Additionally, I can accept the cognitive model whereby science and scientific curiosity is rooted in our psychology in a very deep sense, so that even small children engage in theory-building.
That is all well and good. The basic building blocks for many inventions and institutions existed long before their instantiation. But nevertheless the creation of institutions and inventions at a given moment is deeply contingent. Between 1600 and 1800 the culture of science as we know it emerged in the West. In the 19th and 20th centuries this culture became professionalized, but despite the explicit institutions and formal titles it is bound together by a common set of norms, an ethos if you will. Scientists work long hours for modest remuneration for the vain hope that they will grasp onto one fragment of reality, and pull it out of the darkness and declare to all, “behold!” That’s a rather flowery way of putting the reality that the game is about fun & fame. Most will not gain fame, but hopefully the fun will continue. Even if others may find one’s interests abstruse or esoteric, it is a special thing to be paid to reflect upon and explore what one is interested in.
Obviously this is an idealization. Science is a highly social and political enterprise, and injustice does occur. Merit and effort are not always rewarded, and on occasion machination truly pays. But overall the culture and enterprise muddle along, and are better in terms of yielding a better sense of reality as it is than its competitors. And yet all great things can end, and free-riders can destroy a system. If your rivals and competitors and cheat and getting ahead, what’s to stop you but your own conscience? People will flinch from violating norms initially, even if those actions are in their own self-interest, but eventually they will break. And once they break the norms have shifted, and once a few break, the rest will follow. This is the logic which drives a vicious positive feedback loop, and individuals in their rational self-interest begin to cannibalize the components of the institutions which ideally would allow all to flourish. No one wants to be the last one in a collapsing building, the sucker who asserts that the structure will hold despite all evidence to the contrary.
Deluded as most graduate students are, they by and large are driven by an ideal. Once the ideal, the illusion, is ripped apart, and eaten away from within, one can’t rebuild it in a day. Trust evolves and accumulates it organically. One can not will it into existence. Centuries of capital are at stake, and it would be best to learn the lessons of history. We may declare that history has ended, but we can’t unilaterally abolish eternal laws.
Update:
Link to original post.
I think you may have misunderstood me. By "nanosurgery" I meant not solely Drexlerian medical nanobots (though I wasn't ruling them out). Any drug whose design deliberately and intentionally causes specific, deliberate, and intentional changes to cell-level and molecular-level components of the human body, deliberately and consciously designed with a deep knowledge of the protein structures and cellular metabolic pathways involved, qualifies as nanosurgery, by my definition.
I contrast nanosurgery: deliberate, intentional action controlling the activity or structure of cellular-components - with medicine: the application of small molecules to the human metabolism to create a global, holistic effect with incomplete or nonexistent knowledge of the specific functional mechanisms. Surgery's salient characteristic is that it is intentional and deliberate manipulation to repair functionality. Medicine's salient characteristic is that it is a mapping of cause [primarily drug administration] to effect [changes in reported symptoms], with significantly reduced emphasis on the functional chain of causation between the two. As you said above, medicine is defined as "cheap tricks". That's what it does. That's what it's always been. When you're doing something intentional to a specific piece of a human to modify or repair it's functionality, that's surgery, whether it's done at the cellular or molecular level (nanosurgery) or at the macroscopic level (conventional surgery).
Prior to about 20 years ago, the vast majority of drugs were developed as medicine. Nowadays, more and more attempts at drug design are at least partially attempts to engineer tools for nanosurgery, per this definition. This is a good thing, and I see the trend continuing. If Drexlerian medical nanobots are possible at all, they would represent the logical endpoint of this trend, but I agree they represent an incredible engineering challenge and they may or may not end up being an economical technology for fixing broken human bodies.
Great analysis. A lot of people think that science follows an inevitable and predetermined progression of truths - a "tech tree" determined by the cosmos - but that's clearly not the case, especially in the field of medicine.
Sometimes I rant about how computer vision's fatal flaw is that it is intellectually descended from Computer Science, and so the field looks for results conceptually similar to the great achievements of CS - fast algorithms, proofs of convergence, complexity bounds, fully general frameworks, etc. But what people should really be doing is studying images - heading out into the world and documenting the visual structures and patterns they observe.