If it's worth saying, but not worth its own post (even in Discussion), then it goes here.
Notes for future OT posters:
1. Please add the 'open_thread' tag.
2. Check if there is an active Open Thread before posting a new one. (Immediately before; refresh the list-of-threads page before posting.)
3. Open Threads should be posted in Discussion, and not Main.
4. Open Threads should start on Monday, and end on Sunday.
I believe that an ultrafinitist arithmetic would still be incomplete. By that I mean that classical mathematics could prove that a sufficiently powerful ultrafinitist arithmetic is necessarily incomplete. The exact definition of "sufficiently powerful", and more importantly, the exact definition of "ultrafinitistic" would require attention. I'm not aware of any such result or on-going investigation.
The possibility of an ultrafinitist proof of Gödel's theorem is a different question. For some definition of "ultrafinitistic", even the well-known proofs of Gödel's theorem qualify. Mayhap^1 someone will succed where Nelson failed, and prove that "powerful systems of arithmetic are inconsistent". However, compared to that, Gödel's 1st incompleteness theorem, which merely states that "powerful systems of arithmetic are either incomplete or inconsistent", would seem rather... benign.
^1 very unlikely, but not cosmically unlikely