When I say an AI A is aligned with an operator H, I mean:
A is trying to do what H wants it to do.
The “alignment problem” is the problem of building powerful AI systems that are aligned with their operators.
This is significantly narrower than some other definitions of the alignment problem, so it seems important to clarify what I mean.
In particular, this is the problem of getting your AI to try to do the right thing, not the problem of figuring out which thing is right. An aligned AI would try to figure out which thing is right, and like a human it may or may not succeed.
Analogy
Consider a human assistant who is trying their hardest to do what H wants.
I’d say this assistant is aligned with H. If we build an AI that has an analogous relationship to H, then I’d say we’ve solved the alignment problem.
“Aligned” doesn’t mean “perfect:”
- They could misunderstand an instruction, or be wrong about what H wants at a particular moment in time.
- They may not know everything about the world, and so fail to recognize that an action has a particular bad side effect.
- They may not know everything about H’s preferences, and so fail to recognize that a particular side effect is bad.
- They may build an unaligned AI (while attempting to build an aligned AI).
I use alignment as a statement about the motives of the assistant, not about their knowledge or ability. Improving their knowledge or ability will make them a better assistant — for example, an assistant who knows everything there is to know about H is less likely to be mistaken about what H wants — but it won’t make them more aligned.
(For very low capabilities it becomes hard to talk about alignment. For example, if the assistant can’t recognize or communicate with H, it may not be meaningful to ask whether they are aligned with H.)
Clarifications
- The definition is intended de dicto rather than de re. An aligned A is trying to “do what H wants it to do.” Suppose A thinks that H likes apples, and so goes to the store to buy some apples, but H really prefers oranges. I’d call this behavior aligned because A is trying to do what H wants, even though the thing it is trying to do (“buy apples”) turns out not to be what H wants: the de re interpretation is false but the de dicto interpretation is true.
- An aligned AI can make errors, including moral or psychological errors, and fixing those errors isn’t part of my definition of alignment except insofar as it’s part of getting the AI to “try to do what H wants” de dicto. This is a critical difference between my definition and some other common definitions. I think that using a broader definition (or the de re reading) would also be defensible, but I like it less because it includes many subproblems that I think (a) are much less urgent, (b) are likely to involve totally different techniques than the urgent part of alignment.
- An aligned AI would also be trying to do what H wants with respect to clarifying H’s preferences. For example, it should decide whether to ask if H prefers apples or oranges, based on its best guesses about how important the decision is to H, how confident it is in its current guess, how annoying it would be to ask, etc. Of course, it may also make a mistake at the meta level — for example, it may not understand when it is OK to interrupt H, and therefore avoid asking questions that it would have been better to ask.
- This definition of “alignment” is extremely imprecise. I expect it to correspond to some more precise concept that cleaves reality at the joints. But that might not become clear, one way or the other, until we’ve made significant progress.
- One reason the definition is imprecise is that it’s unclear how to apply the concepts of “intention,” “incentive,” or “motive” to an AI system. One naive approach would be to equate the incentives of an ML system with the objective it was optimized for, but this seems to be a mistake. For example, humans are optimized for reproductive fitness, but it is wrong to say that a human is incentivized to maximize reproductive fitness.
- “What H wants” is even more problematic than “trying.” Clarifying what this expression means, and how to operationalize it in a way that could be used to inform an AI’s behavior, is part of the alignment problem. Without additional clarity on this concept, we will not be able to build an AI that tries to do what H wants it to do.
Postscript on terminological history
I originally described this problem as part of “the AI control problem,” following Nick Bostrom’s usage in Superintelligence, and used “the alignment problem” to mean “understanding how to build AI systems that share human preferences/values” (which would include efforts to clarify human preferences/values).
I adopted the new terminology after some people expressed concern with “the control problem.” There is also a slight difference in meaning: the control problem is about coping with the possibility that an AI would have different preferences from its operator. Alignment is a particular approach to that problem, namely avoiding the preference divergence altogether (so excluding techniques like “put the AI in a really secure box so it can’t cause any trouble”). There currently seems to be a tentative consensus in favor of this approach to the control problem.
I don’t have a strong view about whether “alignment” should refer to this problem or to something different. I do think that some term needs to refer to this problem, to separate it from other problems like “understanding what humans want,” “solving philosophy,” etc.
This post was originally published here on 7th April 2018.
The next post in this sequence will post on Saturday, and will be "An Unaligned Benchmark" by Paul Christiano.
Tomorrow's AI Alignment Sequences post will be the first in a short new sequence of technical exercises from Scott Garrabrant.
If you think this risk is very large, presumably there is some positive argument for why it's so large? That seems like the most natural way to run the argument. I agree it's not clear what exactly the norms of argument here are, but the very basic one seems to be sharing the reason for great concern.
In the case of alignment there are a few lines of argument that we can flesh out pretty far. The basic structure is something like: "(a) if we built AI with our current understanding there is a good chance it would not be trying to do what we wanted or have enough overlap to give the future substantial value, (b) if we built sufficiently competent AI, the future would probably be shaped by its intentions, (c) we have a significant risk of not developing sufficiently better understanding prior to having the capability to build sufficiently competent AI, (d) we have a significant risk of building sufficiently competent AI even if we don't have sufficiently good understanding." (Each of those claims obviously requires more argument, etc.)
One version of the case for worrying about value corruption would be:
This kind of story is kind of conjunctive, so I'd expect to explore a few lines of argument like this, and then try to figure out what are the most important underlying uncertainties (e.g. steps that appear in most arguments of this form, or a more fundamental underlying cause for concern that generates many different arguments).
My most basic concerns with this story are things like:
In the end I'm doing a pretty rough calculation that depends on a whole bunch of stuff, but those feel like they are maybe the most likely differences in view / places where I have something to say. Overall I still think this problem is relatively important, but that's how I get to the intuitive view that it's maybe ~10x lower impact. I would grant the existence of (plenty of) people for whom it's higher impact though.
I think that seems roughly right, probably modulated by some O(1) factor factor reflecting tractability or other factors not captured in the total quantity of risk---maybe I'd expect us to have 2-10x more resources per unit risk devoted to more tractable risks.
In this case I'd be happy with the recommendation of ~10x more people working on motivation than on value drift, that feels like the right ballpark for basically the same reason that motivation feels ~10x more impactful.
I agree I should be more careful about this.
I do think that motivation contains the most urgent/important part and feel pretty comfortable expressing that view (for the same reasons I'm generally inclined to express my views), but could hedge more when making statements like this.
(I think saying "X is more urgent than Y" is basically compatible with the view "There should be 10 people working on X for each person working on Y," even if one also believes "but actually on the current margin investment in Y might be a better deal." Will edit the post to be a bit softer here though.
ETA: actually I think the language in the post basically reflects what I meant, the broader definition seems worse because it contains tons of stuff that is lower priority. The narrower definition doesn't contain every problem that is high priority, it just contains a single high priority problem, which is better than a really broad basket containing a mix of important and not-that-important stuff. But I will likely write a separate post or two at some point about value drift and other important problems other than motivation.)