Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
No, it isn't. The only primitive relations in ZFC are set membership and possibly equality (depending on how you prefer it). "x is a subset of y" is defined to mean "for all z, z in x implies z in y".
Can I downvote myself? Somehow my mind switched "subset" and "membership", and by the virtue of ZFC being a one-sorted theory, lo and behold, I wrote the above absurdity. Anyway, to rewrite the sentence and make it less wrong: subsets(x,y) is defined by the means of a first-order formula through the membership relation, which in a one-sorted theory already pertains the idea of 'subsetting'. x E y --> {x} <= y. So subsetting can be seen as a transfinite extension of the membership relation, and in ZFC we get no more clarity or computational intuition from the first than from the second.