It is a commonplace that correlation does not imply causality, however eyebrow-wagglingly suggestive it may be of causal hypotheses. It is less commonly noted that causality does not imply correlation either. It is quite possible for two variables to have zero correlation, and yet for one of them to be completely determined by the other.

You have read my mind perfectly and understood the demos! But I'll go ahead and make the post anyway, when I have time, because there are some general implications to draw from the disconnect between causality and correlation. Such as, for example, the impossibility of arriving at A-->B<-->C for this example from any existing algorithms for deriving causal structure from statistical information.
Correct me if I'm wrong, but I think I already know the insight behind what you're going to say.
It's this: there is no fully general way to detect all mutual information between variables, because that would be equivalent to being able to compute Kolmogorov complexity (minimum length to output a string), which would in turn be equivalent to solving the Halting problem.