I wrote this blogpost because I thought it took an excessive amount of digging to understand what a spinor was. My original motivation was to understand wavefunctions more concretely since I recently discovered that wavefunctions are spinor-valued, not (necessarily) complex-valued. That took me down a rabbit hole of gamma matrices, geometric algebra, quaternions, and about a dozen other topics.
I think physics is taught very badly. Modern physical theories are built on some very heavy and very powerful mathematical machinery. That machinery is absolutely worth learning, but expositions on physical phenomena seem to have no middle ground between "breadth-first" (require all the background before being able to understand anything), "assembly-level" (discuss the raw equations without any intuition), and "vague analogies." It seems entirely possible to introduce slices of very abstract math as needed so people can go deep without having to go wide and without having to sacrifice either intuition or precision.
Anyway. This blogpost was a proof of concept. It assumes a background in linear algebra, no more than what's taught to a STEM freshman. I try to explain a vertical slice of the mathematical machinery needed to understand spinors. I'm not a physicist, nor do I have access to one, so I might have gotten something wrong. If you notice any errors, please let me know.
Reading the wikipedia page on scalar field, I think I understand the confusion here. Scalar fields are supposed to be invariant under changes in reference frame assuming a canonical coordinate system for space.
Take two reference frames P(x) and G(x). A scalar field S(x) needs to satisfy:
Meaning the inference of S(x) should not change with reference frame. A scalar field is a vector field that commutes with perspective transformations. Maybe that's what you meant?
I wouldn't use the phrase "transforms trivially" here since a "trivial transformation" usually refers to the identity transformation. I wouldn't use a head tilt example either since a lot of vector fields are going to commute with spatial rotations, so it's not good for revealing the differences. And I think you got the association backwards in your original explanation: scalar fields appear to represent quantities in the underlying space unaffected by head tilts, and so they would be the ones "transforming in the opposite direction" in the analogy since they would remain fixed in "canonical space".