When I say an AI A is aligned with an operator H, I mean:
A is trying to do what H wants it to do.
The “alignment problem” is the problem of building powerful AI systems that are aligned with their operators.
This is significantly narrower than some other definitions of the alignment problem, so it seems important to clarify what I mean.
In particular, this is the problem of getting your AI to try to do the right thing, not the problem of figuring out which thing is right. An aligned AI would try to figure out which thing is right, and like a human it may or may not succeed.
Analogy
Consider a human assistant who is trying their hardest to do what H wants.
I’d say this assistant is aligned with H. If we build an AI that has an analogous relationship to H, then I’d say we’ve solved the alignment problem.
“Aligned” doesn’t mean “perfect:”
- They could misunderstand an instruction, or be wrong about what H wants at a particular moment in time.
- They may not know everything about the world, and so fail to recognize that an action has a particular bad side effect.
- They may not know everything about H’s preferences, and so fail to recognize that a particular side effect is bad.
- They may build an unaligned AI (while attempting to build an aligned AI).
I use alignment as a statement about the motives of the assistant, not about their knowledge or ability. Improving their knowledge or ability will make them a better assistant — for example, an assistant who knows everything there is to know about H is less likely to be mistaken about what H wants — but it won’t make them more aligned.
(For very low capabilities it becomes hard to talk about alignment. For example, if the assistant can’t recognize or communicate with H, it may not be meaningful to ask whether they are aligned with H.)
Clarifications
- The definition is intended de dicto rather than de re. An aligned A is trying to “do what H wants it to do.” Suppose A thinks that H likes apples, and so goes to the store to buy some apples, but H really prefers oranges. I’d call this behavior aligned because A is trying to do what H wants, even though the thing it is trying to do (“buy apples”) turns out not to be what H wants: the de re interpretation is false but the de dicto interpretation is true.
- An aligned AI can make errors, including moral or psychological errors, and fixing those errors isn’t part of my definition of alignment except insofar as it’s part of getting the AI to “try to do what H wants” de dicto. This is a critical difference between my definition and some other common definitions. I think that using a broader definition (or the de re reading) would also be defensible, but I like it less because it includes many subproblems that I think (a) are much less urgent, (b) are likely to involve totally different techniques than the urgent part of alignment.
- An aligned AI would also be trying to do what H wants with respect to clarifying H’s preferences. For example, it should decide whether to ask if H prefers apples or oranges, based on its best guesses about how important the decision is to H, how confident it is in its current guess, how annoying it would be to ask, etc. Of course, it may also make a mistake at the meta level — for example, it may not understand when it is OK to interrupt H, and therefore avoid asking questions that it would have been better to ask.
- This definition of “alignment” is extremely imprecise. I expect it to correspond to some more precise concept that cleaves reality at the joints. But that might not become clear, one way or the other, until we’ve made significant progress.
- One reason the definition is imprecise is that it’s unclear how to apply the concepts of “intention,” “incentive,” or “motive” to an AI system. One naive approach would be to equate the incentives of an ML system with the objective it was optimized for, but this seems to be a mistake. For example, humans are optimized for reproductive fitness, but it is wrong to say that a human is incentivized to maximize reproductive fitness.
- “What H wants” is even more problematic than “trying.” Clarifying what this expression means, and how to operationalize it in a way that could be used to inform an AI’s behavior, is part of the alignment problem. Without additional clarity on this concept, we will not be able to build an AI that tries to do what H wants it to do.
Postscript on terminological history
I originally described this problem as part of “the AI control problem,” following Nick Bostrom’s usage in Superintelligence, and used “the alignment problem” to mean “understanding how to build AI systems that share human preferences/values” (which would include efforts to clarify human preferences/values).
I adopted the new terminology after some people expressed concern with “the control problem.” There is also a slight difference in meaning: the control problem is about coping with the possibility that an AI would have different preferences from its operator. Alignment is a particular approach to that problem, namely avoiding the preference divergence altogether (so excluding techniques like “put the AI in a really secure box so it can’t cause any trouble”). There currently seems to be a tentative consensus in favor of this approach to the control problem.
I don’t have a strong view about whether “alignment” should refer to this problem or to something different. I do think that some term needs to refer to this problem, to separate it from other problems like “understanding what humans want,” “solving philosophy,” etc.
This post was originally published here on 7th April 2018.
The next post in this sequence will post on Saturday, and will be "An Unaligned Benchmark" by Paul Christiano.
Tomorrow's AI Alignment Sequences post will be the first in a short new sequence of technical exercises from Scott Garrabrant.
Do you think that at the time when AI development wasn't an already-running process, and AI was still a new thing that the public could be expected to be risk-averse about (when would you say that was?), the argument "working on alignment isn't urgent because humans can probably coordinate to stop AI development" would have been a good one?
Same question here. Back when "don't develop AI" was still a binding on our future selves, should we have expected that we will coordinate to stop AI development, and it's just bad luck that we haven't succeeded in doing that?
Can you be more specific? What global agreement do you think would be reached, that is both realistic and would solve the kinds of problems that I'm worried about (e.g., unintentional corruption of humans by "aligned" AIs who give humans too much power or options that they can't handle, and deliberate manipulation of humans by unaligned AIs or AIs aligned to other users)?
For example, create an AI that can help the user with philosophical questions at least as much as technical questions. (This could be done for example by figuring out how to better use Iterated Amplification to answer philosophical questions, or how to do imitation learning of human philosophers, or how to apply inverse reinforcement learning to philosophical reasoning.) Then the user could ask questions like "Am I likely to be corrupted by access to this technology? What can I do to prevent that while still taking advantage of it?" Or "Is this just an extremely persuasive attempt at manipulation or an actually good moral argument?"
As another example, solve metaethics and build that into the AI so that the AI can figure out or learn the actual terminal values of the user, which would make it easier to protect the user from manipulation and self-corruption. And even if the human user is corrupted, the AI still has the correct utility function, and when it has made enough technological progress it can uncorrupt the human.
Can you point me to any relevant results that have been written down, or explain what you learned from those conversations?
To address this and the question (from the parallel thread) of whether you should personally work on this, I think we need people to either solve the technical problems or at least to collectively try hard enough to convincingly say that it's too difficult to do. (Otherwise who is going to convince policymakers to adopt the very costly social solutions? Who is going to convince people to start/join a social movement to influence policymakers to consider those costly social solutions? The fact that those things tend to take a lot of time seems like sufficient reason for urgency on the technical side, even if you expect the social solutions to be feasible.) Who are these people going to be, especially the first ones to join the field and help grow it? Probably existing AI alignment researchers, right? (I can probably make stronger arguments in this direction but I don't want to be too "pushy" so I'll stop here.)