I don't think filters have to be sequential - some could be alternatives to each other, and they might interact. Consider the following.
Each supernova sterilizes everything for several lightyears around them. This galaxy has three supernovas per century, and it used to have more. Earth has gone unsterilized for 3.6 billion years, i.e. each of the last (very roughly) 100 million supernovas was far enough away to not kill it.
That's easy to do for a planet somewhere on the outer rim, but the ones out there seem to lack heavy elements. If single-celled, mullti-celled, even intelligent life was easy given a couple billion years of evolution, you still couldn't go to space on a periodic table that didn't contain any metals.
So planets in areas with lots of supernova activity (i.e. high density of stars) could simply never have enough time between sterilizations to achieve spacefaring civilization, while planets in areas with low density of stars/supernovas haven't accumulated enough heavy elements to build industry and spaceships. Neither effect prohibits everything, but together they're a great filter.
There could be other combinations of prohibitive factors, where passing one makes passi...
Really-quick-and-dirty calculation time!
Let's say 3 supernovas per century and each sterilizing 10 light years in radius.
That produces an average sterilization volume of about ten cubic light years per year. Total volume of the galactic thin disc is on the order of 2*10^13 cubic light years. That produces a half life of sterilization on the order of trillions of years, though you can bring it down to billions if you increase the supernova rate by a factor of a thousand or increase sterilization radius out to 100+ light years.
We can probably discount the galactic core for any purposes though - I've seen fun papers proposing evidence that it undergoes periodic starbursts every few tens of millions of years and the galactic supernova rate then briefly goes up to something like one per year with most of them in the core.
Thanks, but it appears we're both wrong. Here is a nice intro article that gives proper numbers on this very subject and concludes supernovae aren't a life-forbidding problem even in the galactic center.
But high density of stars might lead to planetary orbit perturbations which could be. It appears the galaxy is a bit complicated.
BTW, this recently showed up on arXiv:
...On the role of GRBs on life extinction in the Universe
As a copious source of gamma-rays, a nearby Galactic Gamma-Ray Burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 Gyr close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500 Myr causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center,
Actually, I'm not a layman, and I have some ideas.
The Proterozoic (2 billion years ago) is a time period that geologists affectionately call the 'boring billion'. In those rock strata, we very often find biogenic stromatolites, crumpled accretionary structures produced by the accumulation of mineral waste products in microbial metabolism. In the wild, they look like lumpy rocks on coastlines and in lakes, with a thin biofilm on top. Think of them as the microbial forests through which the early eukaryotes would have foraged and hunted. These ecosystems are also exclusively shallow-water, since they require sunlight and water in copious supply.
As such, they would be wiped out by a 'moderate' gamma ray burst, since they don't have the protection of deep oceans. In other words, there would be a specific moment at which accretion halted for every biogenic stromatolite at the same time. This would be followed, in geologic history, by a shortish period in which newly lithified sediments lacked a biological influence, as life clawed its way back from the deep oceans. Even if the biosphere that followed was indistinguishable from the previous incarnation (which itself seems unlikely...
Agree. the road from creation of life to creation of any nervous system at all is an extremely long and fraught one.
Life on our planet has a very specific chemistry. It's possible that almost all possible chemistries limit complexity more than ours - leading to many planets of very simple organisms. Very large number of phyla on earth reach evolutionary dead ends both archae and bacteria are stuck as single cellular organisms, (or very simple aggregrates) - Plants cannot develop movement because of their cell walls, while insects cannot grow bigger because their lungs and exoskeletons do not scale upwards.
Genetics is an entire optimization layer underlying our own, neural one. I think the fact that it had to throw up an entire new, viable optimization layer represents a filter.
This is another good explanation instead of / in addition to the Great Filter.
It could be that there are many local optima to life, that are hard to escape. And that intelligence requires an unlikely local optimum. This functions like an early Great Filter, but in addition, failing this filter (by going to a bad local optimum) might make it impossible to start over.
For example, you could imagine that it were possible to evolve a gray goo like organism which eats everything else, but which is very robust to mutations, so it doesn't evolve further.
One theory gaining support recently is that the transition from prokaryote to eukaryote was damned hard, so that seems like a decent candidate given our limited knowledge today.
If the current model - merger of multiple prokaryotes - is correct, then the linked article (which says "And in more than 3 billion years of existence, it happened exactly once.") is incorrect. Nuclei, mitochondria, and cholorplasts represent 3 distinct merger events here on Earth. Actually, the article even mentions nuclei, mitochondria, and chloroplasts all being likely endosymbionts, then goes and repeats the claim of uniqueness.
In any case, if it can happen 3 times on one planet, it probably isn't dramatically unlikely, especially since at least one of those three events (chloroplasts) is strictly unnecessary for intelligence (in that no known intelligent species possesses them).
If the Machiavellian Intelligence Hypothesis is the correct explanation for the runaway explosion of human intellect - that we got smarter in order to outcompete each other for status, not in order to survive - then solitary species like the octopus would simply never experience the selection pressure needed to push them up to human level. Dolphins, in contrast, are a social animal, and maybe dolphins would be susceptible to intra-species selection for intelligence.
However, dolphins would hit a different filter, with their unfortunate body plan, lacking any type of fine manipulator limb whatsoever, making it infeasible to build complex tools.
This might - purely hypothetically - lead to a massive boom in octopus population, causing the octopi to eat everything edible, causing mass starvation.
This relies on group selection to work.
I wonder - if an underwater civilisation were to arise, would they consider an open-air civilisation impossible?
"You're stuck crawling around in a mere two dimensions, unless you put a lot of evolutionary effort into wings, but then you have terrible weight limits on the size of the brain; you can't assign land to kelp farms and then live in the area above it, so total population is severely limited; and every couple of centuries or so a tsunami will come and wipe out anything built along the coast..."
It's hard to evaluate for the same reason it's hard to evaluate whether off-world life could be non-carbon/water-based (maybe we just don't have the imagination), but I think that excluding humans, land-based 'civilization' would still look superior on the merits of what animals and other creatures have done. If we look at compilations of tool use like https://en.wikipedia.org/wiki/Tool_use_by_animals land life dominates.
Complex sea life mostly consists of octopuses and cetaceans; the former seem to only use rudimentary tools for shelter, while the latter do 'bubble netting' (interesting but not a step towards anything), nose protection with sponges (proto-clothing?), and shells as scoops. Otters hammer open sea urchins with rocks, similar to some fishes. Further, they're cut off from sea sources of metal and minerals like deep-sea vents - dolphins can't go that deep.
In contrast, land life has tool use spread over all sorts of creatures from insects to birds. They benefit from sharp unworn stones (smashing, throwing), abundant sticks and thorns (which can be used in all sorts of ways - picking up termites, jabbing for fish, measuring water depth, impaling & storing prey like th...
You make a very compelling argument, and on balance I think that you are probably correct in your conclusions.
Part of it may be because, for a land animal, the ground is always there. There's always a strong probability of a rock at your feet to pick up. For sea creatures, it's possible (in theory) to wander around for months without seeing another solid object. So, land animals have less space to move about in, but have an easier time finding simple tools.
This, of course, relies on the idea that tools - unliving lumps of matter used for a purpose - are a necessary component of a civilisation. It goes without saying that tools are a necessary component of our civilisation; but are they a necessary component of all possible civilisations?
The theoretical underwater civilisation has one thing in great abundance - space. The oceans cover three-quarters of our planet, and sea creatures can move up and down easily enough. Is there any way that that space can be used, as a foundation for some form of aquatic civilisation?
Thinking about bubble netting - it should be possible for dolphins to practice a form of agriculture, herding and taming schools of edible fish, much like shepherds. (I b...
Mostly I expect creative surprises based on overall impression about the power of engineering. Let's try to do a bit of exploratory engineering, consider projects that include steps that are clearly suboptimal, but seem like they could do the trick. (A practicing engineer or ten years of planning would improve this dramatically, removing stupid assumptions and finding better alternatives; a hundred thousand years of actually working on the subprojects will do even better.)
Initially, power can be provided by pulling strong vines (some kind of seaweed will probably work) attached together. It should be possible to farm trees somewhere on the shoreline, if you don't mind waiting a few decades (not sure if there are any useful underwater plants, but there could be). A saw could be made of something like a shark jaw with vines attached to the sides, so that it can be dragged back and forth. This could be used to make wooden supporting structures that help with improving control of what kind of change is inflicted on the material by a saw. Eventually, incremental improvements in control and precision of saws would allow getting to something functionally similar to sawmills, bonecraft and...
I think the basic problem here is that I have to proove a negative, which is, as we all know, impossible. Thus I am pretty much reduced to debating your suggestions. This will sound quite nitpicky but is not meant as an offense, but to demonstrate, where the difficulties would be:
Initially, power can be provided by pulling strong vines (some kind of seaweed will probably work) attached together.
Power to what? Whatever it is it has to be build without hands !!! and with very basic tools. No Seeweed would not work, because there is no evolutionary pressure on aquatic plants to build the strong supportive structures we use from terrestrial plants.
It should be possible to farm trees somewhere on the shoreline
No, trees do not grow in salty environment (except mangroves). How does a dolphin plant, and harvest mangroves without hands and without an axe or a saw (see below).
A saw could be made of something like a shark jaw with vines attached to the sides, so that it can be dragged back and forth.
No it can not: Shark teeth would break quickly and even if they would not, they do not have the correct form to saw wood. Humans allmost exclusively used axes and knives for woodcraft...
Note that AI is certainly not a great filter: an AI would likely expand through the universe itself
What makes you confident that there's not high probability of there being an AI somewhere outside our light cone, but shortly after an AI (or any other highly expansionist extraterrestrial) enters our light cone there are no longer conscious observers, so the vast majority of human consciousness-seconds are spent observing that there's no visitors? Even if it's vanishingly unlikely that no destructive intelligence explosion occurred in a randomly selected past light cone, we would necessarily only be able to observe states of the universe where there was no intelligence explosion, a friendly one, or one which was largely passive (e.g. an AI with the goal to prevent other intelligence explosions within it's sphere of influence, but otherwise minimize interference).
Then the universe we observe should be much younger, because most evolutionarily-arising life will exist on worlds that don't have a nearby AI neighbor. Our telescopes can see older galaxies than this one, and we expect those to contain much older planets with all the heavy elements. On your hypothesis, most observers should not utter that sentence in conversations like this one.
Another fairly plausible great filter is in the interaction between life and geochemistry- this is a variant on 'central nervous systems are unlikely'.
There is some reason to think that microbial metabolisms are somewhat destabilizing in the history of the planet, at least on very large scales. There is of course the classic example of photosynthesis producing atmospheric oxygen. Can you imagine what would happen if bacteria injected large amounts of free oxygen in to Titan's atmosphere? Given the space of all geochemistry for terrestrial planets in the...
I suspect you are correct that the great filter does not lie between urbilatiran and dophin intelligence, but I did think of one possible hole in the argument (that I don't think is likely to end up mattering). It is possible that instead of it being easy in general for something like an urbilatiran to evolve significant intelligence, it might only be easy on places like Earth. That is, while there exist environmental conditions under which you would expect an urbilatiran-level organism to easily evolve to dolphin level in several independent instances, such conditions are very rare, and on most planets where urbilatiran-level organisms evolve, they don't advance much further.
Getting from dolphin to human intelligence is unlikely.
I think this is my current favorite (but not by much): it seems to me that the evolution of human intelligence from ape intelligence may have been contingent on several geographic factors of the early pre-human environment, and a planet where those features don't occur could be teeming with intelligent life, but nothing quite intelligent enough. But I'm not a geologist who could estimate how many randomly chosen planets would have those features.
Interesting, but I would have two more things to add :
Both dolphin and octopus seem to be a "dead-end" for the purpose of technological civilization. The main reason for that, I would say, is that there are water-based, and water-based makes early civilization much harder (tools are harder to make and use underwater, you can't make fire, ...).
Evolution from common predecessor to dolphins and octopus aren't completely independent from our evolution. They are all dependent on Earth being globally stable enough. Gravity strong enough to hold th
I will again try for a poll.
Where do you think the great filter most likely lies:
[pollid:766]
Can somebody explain to me why people generally assume that the great filter has a single cause? My gut says it's most likely a dozen one-in-a-million chances that all have to turn out just right for intelligent life to colonize the universe. So the total chance would be 1/1000000^12. Yet everyone talks of a single 'great filter' and I don't get why.
Maybe not explicitly, but I keep seeing people refer to "the great filter" as if it was a single thing. But maybe you're right and I'm reading too much into this.
But that wouldn't answer the question, how much danger do we still face? Which may be the biggest question.
It is. But even there, I'm under the impression that many people are focussing on the answers “most of it” and “hardly any” neglecting everything in between.
A few possible hypotheses (where by “supercomputers” I mean ‘computation capabilities comparable to those available to people on Earth in 2014’):
Nearly all the filter ahead. A sizeable fraction of all star systems have civilizations with supercomputers, and about one in 1e24 of them will take over their future light cone.
Most of the filter ahead. There are about a million civilizations with supercomputers per galaxy in average, and about one in 1e18 of them will take over their future light cone.
Halfway through the filter. There is about one civilization with supercomputers per galaxy in average, and about one in 1e12 of them will take over their future light cone.
Most of the filter behind. There is about one civilization with supercomputers per million galaxies in average, and about one in a million of them will take over their future light cone.
Nearly all of the filter behind. There have been few or no oth
Maybe I am being uncharitable, but when Sophronius asks "[c]an somebody explain to me why people generally assume that the great filter has a single cause?" and you reply "I don't think anyone really assumes that", I have to admit that I've always seen people think of the Great Filter in terms of one main cause (e.g., look to the poll in this thread where people choose one particular cause), and not in terms of multiple causes.
Though, you're right that no one has said that multiple causes is outright impossible. And you may be right that one main cause makes a lot more sense. But I do think Sophronius raises a question worth considering, at least a bit.
To whoever voted for “Multi-cell life unlikely”: Multicellularity has evolved independently at least 46 times.
[x] other reasons
What if we're the first in a winner-takes-all scenario? If the first-mover prevents (or vastly reduces the likelihood of) the evolution of latter intelligent life, intelligent life should not be surprised by being the first intelligent species to evolve.
For what it's worth, my personal judgement is that the filter lies before the creation of a central nervous system.
Why? Having dabbled a bit in evolutionary simulations, I find that, once you have unicellular organisms, the emergence of cooperation between them is only a matter of time, and from there multicellulars form and cell specialization based on division of labor begins. Once you have a dedicated organism-wide communication subsystem, why would it be unlikely for a centralized command structure to evolve?
My personal guess would be that the great...
"Note that AI is certainly not a great filter: an AI would likely expand through the universe itself"
I was confused by this, what is it supposed to mean? Off the top of my head it certainly seems like there is sufficient space between 'make and AI that causes the extinction of the human races or otherwise makes expanding into space difficult' and 'make an AI that causes the extinction of the human race but which goes on to colonize the universe' for AI to be a great filter.
The universe has a limited amount of free energy. For almost any goal or utility function that an AI had, it would do better the more free energy it had. Hence, almost every type of hyper-intelligent AI that could build self-replicating nanobots would quickly capture as much free energy as it could, meaning it would likely expand outwards at near the speed of light.
At the very least, you would expect a hyper-intelligent AI to "turn off stars" or capture there free energy to prevent such astronomical waste of finite resources.
I'm extremely curious: how did you come to conclude that the Great Filter was probably a particular evolutionary leap?
Regarding anthropics, specifically this:
Is intelligence hard to evolve? Well, we're intelligent, so it must be easy... except that only an intelligent species would be able to ask that question, so we run straight into the problem of anthropics. Any being that asked that question would have to be intelligent, so this can't tell us anything about its difficulty
I think the line of reasoning is valid, it's just that there's a lot of confusion about probabilities and events to which the probabilities apply. Of course the probability of life arising - once...
With at least three intelligent-ish species on earth, while there is only one technological species, intelligence would not seem to be a great filter.
The things that allow us to be technological seems to me to be at least these four things occurring in parallel: 1) intelligence, 2) complex language, 3) dexterity, 4) an "instinct" to trade. Ridley suggested in Rational Optimist that other apes lack the instinct to trade even when we teach them language. I have no idea how this hypothesis fares in the wider world.
The great filter could concei...
Bonobos are one of Earth's most intelligent species, and seem much kinder than humans. The existence of altruistically motivated human inventors like Stanford R. Ovshinsky and Douglas Engelbart suggests that being bonobo-level kind would not prevent technological development.
This seems like evidence against certain kinds of late Great Filters.
Another point: I imagine if we had evolved from bonobos, we would be doing effective altruism on a much larger and better scale than we are now, for instance. So based on the existence of bonobos, one could argue th...
I'm sorry but I think this article's line of reasoning is irreparably biased by the assumption that we don't see any evidence of complex technological life in the universe. It's entirely possible we see it and don't recognize it as such because of the considerable difficulties humans experience when sorting through all the data in the universe looking for a pattern they don't recognize yet.
Technology is defined, to a certain extent, by it's newness. What could make us think we would recognize something we've never seen before and had no hand in creating? M...
My current estimates lead me to think either AI is hard, the filter is already behind us or there are implementable "mundane" solutions to existential risk. Or technological risk/progress on earth is very unusual (maybe some organisms would never be tempted to use a nuke as they are too "emotionally" connected to the pain of other members of their species).
Consider the following possibilities for how long it will take for humans to develop AI (friendly or otherwise) if we don't kill ourselves via viruses, nuclear catastrophe etc.
30 ye...
Let's make the further assumption that our common ancestor with dolphins was dumber than the modern octopus. This doesn't seem a stretch seeing how intelligent the modern octopus can be, how minor in terms of ecological role the common dolphin-human ancestor must have been, and seeing the stupidity of many of the descendants of that common ancestor.
Could you expand on the second point, as to why it must have a minor ecological role, and why this means it would be dumber? I know little evolutionary theory, and would appreciate the explanation. Cheers.
You assume that going to the stars is a measure of intelligence, and it does seem logical, but what if a comparably intelligent race decided against doing it? For example, if they have a way to live forever on their planet but lack the means to support the same conditions when they leave it, let alone the incentive to change other planets to habitual for them, then developing the star-reaching technology is not a Great Filter for them, but merely a step outward.
Is intelligence hard to evolve? Well, we're intelligent, so it must be easy... except that only an intelligent species would be able to ask that question, so we run straight into the problem of anthropics. Any being that asked that question would have to be intelligent, so this can't tell us anything about its difficulty (a similar mistake would be to ask "is most of the universe hospitable to life?", and then looking around and noting that everything seems pretty hospitable at first glance...).
Instead, one could point at the great apes, note their high intelligence, see that intelligence arises separately, and hence that it can't be too hard to evolve.
One could do that... but one would be wrong. The key test is not whether intelligence can arise separately, but whether it can arise independently. Chimpanzees, Bonobos and Gorillas and such are all "on our line": they are close to common ancestors of ours, which we would expect to be intelligent because we are intelligent. Intelligent species tend to have intelligent relatives. So they don't provide any extra information about the ease or difficulty of evolving intelligence.
To get independent intelligence, we need to go far from our line. Enter the smart and cute icon on many student posters: the dolphin.
Dolphins are certainly intelligent. And they are certainly far from our line. It seems hard to find a definite answer, but it seems that the last common ancestor of humans and dolphins was a small mammal existing during the reign of the dinosaurs. Humans and dolphins have been indicated by red rectangles, and their last common ancestor with a red circle.
This red circle is well before the K-T boundary (indicated by the dotted line), hence represents a mammal living in the literal shadow of the dinosaurs.
We can apply a convergent evolution argument to this common ancestor. Thus, assuming that subsequent evolution was somewhat independent, getting from that common ancestor to dolphin level of intelligence is something that can happen relatively easily.
Can we go further? Well, what if we applied the argument twice? Let's bring in the most alien looking of the high-intelligence animals: the octopus.
Let's make the further assumption that our common ancestor with dolphins was dumber than the modern octopus. This doesn't seem a stretch seeing how intelligent the modern octopus can be, how minor in terms of ecological role the common dolphin-human ancestor must have been, and seeing the stupidity of many of the descendants of that common ancestor.
If we accept that assumption, we can then start looking for the common ancestor of humans and octopuses. Our two species are really far apart:
We therefore have to go back to around the last common ancestor of the Bilateria (creatures with bilateral symmetry, i.e. they have a front and a back end, as well as an upside and downside, and therefore a left and a right). This is the (speculative) urbilaterian. There are no known examples or fossils of it, which means that it was likely less than 1 cm in length. To quote Wikipedia: "The urbilaterian is often considered to have possessed a gut and internal organs, a segmented body and a centralised nervous system, as well as a biphasic life cycle (i.e. consisting of larvae and adults) and some features of embryonic development. However, this need not necessarily be the case." Very confusing, and with no information about intelligence level. However, since the organism was so small and since it was the ancestor of almost every animal alive today (including worms and Bryozoa), our best estimate would be that it's pretty stupid, with the simplest possible "brain".
Putting this all together, it seems evolutionarily easy to get from urbilatrian intelligence to Octopus intelligence, and from Octopus intelligence to dolphin intelligence - thus from urbilatrian to dolphin.
Note that this argument assumes that intelligence can be put on something like a linear scale. One could argue that Octopuses have low social intelligence, for instance. But then one could repeat the argument with distant animals with high social intelligence such as certain insects. Especially if one believe in a more general form of intelligence, it seems that this family of arguments could be used effectively to demonstrate dolphin-level intelligence emerging easily from very low levels of intelligence.
Application to the Great Filter
The Great Filter (related to the Fermi Paradox) is the argument that since we don't see any evidence of complex technological life in the universe, something must be preventing its emergence. At some point on the trajectory, something is culling almost all species.
An "early" great filter wouldn't affect us: that means that we got through the filter already, it's in our past, so the emptiness among the stars doesn't say anything negative for us. A "late" great filter is bad news: that implies that few civilizations make it from technological civilization to star-spanning civilization, with bad results for us. Note that AI is certainly not a great filter: an AI would likely expand through the universe itself
The real filter could be a combination of an early one and a late one, of course. But, unless the factors are exquisitely well-balanced, its likely that there is one location in civilizational development where most of the filter lies (ie where the probability of getting to the next stage is the lowest). Some possible locations for this could be:
These categories aren't of same size, of course - the first three are very diverse and large, for instance. Then what the evolutionary argument above says, is that the Great Filter in unlikely to be in the third, bolded category (which is in fact a multi-category).
For what it's worth, my personal judgement is that the filter lies before the creation of a central nervous system.