Hi all, I've been working on some AI forecasting research and have prepared a draft report on timelines to transformative AI. I would love feedback from this community, so I've made the report viewable in a Google Drive folder here.
With that said, most of my focus so far has been on the high-level structure of the framework, so the particular quantitative estimates are very much in flux and many input parameters aren't pinned down well -- I wrote the bulk of this report before July and have received feedback since then that I haven't fully incorporated yet. I'd prefer if people didn't share it widely in a low-bandwidth way (e.g., just posting key graphics on Facebook or Twitter) since the conclusions don't reflect Open Phil's "institutional view" yet, and there may well be some errors in the report.
The report includes a quantitative model written in Python. Ought has worked with me to integrate their forecasting platform Elicit into the model so that you can see other people's forecasts for various parameters. If you have questions or feedback about the Elicit integration, feel free to reach out to elicit@ought.org.
Looking forward to hearing people's thoughts!
This is superb, and I think it'll have a substantial impact on debate going work. Great work!
Thanks so much, glad you're finding it helpful!
I haven't thought too much about short term spending scaleup; thanks for the links, My current intuition is that our subjective distribution should not be highly bimodal the way you describe -- it seems like the industry could land somewhere along a broad spectrum from perfect competition to monopoly (with oligopoly seeming most plausible) and somewhere along a broad spectrum of possible profit margins.